Advertisement

Applied Mathematics and Mechanics

, Volume 34, Issue 2, pp 167–176 | Cite as

Stagnation-point flow of couple stress fluid with melting heat transfer

  • T. Hayat
  • M. Mustafa
  • Z. IqbalEmail author
  • A. Alsaedi
Article

Abstract

Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.

Key words

couple stress fluid melting heat transfer stagnation-point flow series solution 

Chinese Library Classification

O373 

2010 Mathematics Subject Classification

76A05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blasius, H. Grenzschichten in Flussigkeiten mit Kleiner Reibung. Zeitschrift für Angewandte Mathematik und Physik, 56, 1–37 (1908)Google Scholar
  2. [2]
    Howarth, L. On the solution of the laminar boundary layer equations. Proceedings of the Royal Society A, 164, 547–579 (1938)zbMATHCrossRefGoogle Scholar
  3. [3]
    Sakiadis, B. C. Boundary-layer behaviour on continuous solid surfaces, I. boundary-layer equations for two-dimensional and axisymmetric flow. AIChE Journal, 7, 26–28 (1961)CrossRefGoogle Scholar
  4. [4]
    Crane, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 7, 21–28 (1961)Google Scholar
  5. [5]
    Rajagopal, K. R., Na, T. Y., and Gupta, A. S. Flow of a viscoelastic fluid over a stretching sheet. Rheology Acta, 23, 213–215 (1984)CrossRefGoogle Scholar
  6. [6]
    Sankara, K. and Watson, L. T. Micropolar fluid past a stretching sheet. Zeitschrift für Angewandte Mathematik und Physik, 36, 845–853 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Andersson, H. I., Bech, K. H., and Dandapat, B. S. Magnetohydrodynamic flow of a powerlaw fluid over a stretching sheet. International Journal of Nonlinear Mechanics, 27, 929–936 (1992)zbMATHCrossRefGoogle Scholar
  8. [8]
    Elbashbeshy, E. M. A. and Bazid, M. A. A. Heat transfer over an unsteady stretching surface with internal heat generation. Applied Mathematics and Computation, 138, 239–245 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Nazar, R., Amin, N., and Pop, I. Unsteady boundary layer flow due to a stretching surface in a rotating fluid. Mechanics Research Communications, 31, 121–128 (2004)zbMATHCrossRefGoogle Scholar
  10. [10]
    Hayat, T., Iqbal, Z., Mustafa, M., and Obaidat, S. Boundary layer flow of an Oldroyd-B fluid with convective boundary conditions. Heat Transfer—Asian Research, 40(7), 744–755 (2011)CrossRefGoogle Scholar
  11. [11]
    Mustafa, M., Hayat, T., Pop, I., Asghar, S., and Obaidat, S. Stagnation point flow of nano fluid over a stretching sheet. International Journal of Heat and Mass Transfer, 54, 5588–5594 (2011)zbMATHCrossRefGoogle Scholar
  12. [12]
    Hayat, T. and Mustafa, M. Influence of thermal radiation on the unsteady mixed convection flow of a Jeffrey fluid over a stretching sheet. Zeitschrift Naturforsch Angewandte, 65a, 711–719 (2010)Google Scholar
  13. [13]
    Eldahab, E. M. A. Hydromagnetic three-dimensional flow over a stretching surface with heat and mass transfer. Heat and Mass Transfer, 41, 734–743 (2005)CrossRefGoogle Scholar
  14. [14]
    Ariel, P. D. The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Computers and Mathematics with Applications, 54, 920–925 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    Hayat, T., Iqbal, Z., Qasim, M., and Obaidat, S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. International Journal of Heat and Mass Transfer, 55, 1817–1822 (2012)CrossRefGoogle Scholar
  16. [16]
    Epstein, M. and Cho, D. H. Melting heat transfer in steady laminar flow over a flat plate. ASME Journal of Heat Transfer, 98, 531–533 (1976)CrossRefGoogle Scholar
  17. [17]
    Kazmierczak, M., Poulikakos, D., and Pop, I. Melting from a flat plate embedded in a porous medium in the presence of steady convection. Numerical Heat Transfer, 10, 571–581 (1986)CrossRefGoogle Scholar
  18. 18]
    Kazmierczak, M., Poulikakos, D., and Sadowski, D. Melting of a vertical plate in porous medium controlled by forced convection of a dissimilar fluid. International Communication of Heat and Mass Transfer, 14, 507–517 (1987)CrossRefGoogle Scholar
  19. [19]
    Ishak, A., Nazar, R., Bachok, N., and Pop, I. Melting heat transfer in steady laminar flow over a moving surface. Heat Mass Transfer, 46, 463–468 (2010)CrossRefGoogle Scholar
  20. [20]
    Bachok, N., Ishak, A., and Pop, I. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Physics Letter A, 374, 4075–4079 (2010)zbMATHCrossRefGoogle Scholar
  21. [21]
    Yacob, N. A., Ishak, A., and Pop, I. Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid. Computer and Fluids, 47, 16–21 (2011)MathSciNetCrossRefGoogle Scholar
  22. [22]
    Hayat, T., Iqbal, Z., Mustafa, M., and Hendi, A. A. Melting heat transfer in the stagnation-point flow of third grade fluid past a stretching sheet with viscous dissipation effects. Thermal Science (2011) DOI 10.2298/TSCI110405119HGoogle Scholar
  23. [23]
    Liao, S. J. Notes on the homotopy analysis method: some definitions and theorems. Communication in Nonlinear Science and Numerical Simulation, 14, 983–997 (2009)zbMATHCrossRefGoogle Scholar
  24. [24]
    Liao, S. J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communication in Nonlinear Science and Numerical Simulation, 15, 2003–2016 (2010)zbMATHCrossRefGoogle Scholar
  25. [25]
    Abbasbandy, S. and Shivanian, E. Solution of singular linear vibrational BVPs by the homotopy analysis method. Journal of Numerical Mathematics and Stochastics, 1, 77–84 (2009)MathSciNetzbMATHGoogle Scholar
  26. [26]
    Bataineh, A. S., Noorani, M. S. M., and Hashim, I. On a new reliable modification of homotopy analysis method. Communication in Nonlinear Science and Numerical Simulation, 14, 409–423 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    Iqbal, Z., Sajid, M., Hayat, T., and Obaidat, S. Flow and heat transfer with prescribed skin friction in a rotating fluid. International Journal for Numerical Methods in Fluids, 68(7), 872–886 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Hayat, T., Mustafa, M., and Asghar, S. Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction. Non-Linear Analaysis Real World Applications, 11, 3186–3197 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Abbasbandy, S. and Shirzadi, A. A new application of the homotopy analysis method: solving the Sturm-Liouville problems. Communication in Nonlinear Science and Numerical Simulation, 16, 112–126 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    Stokes, V. K. Couple stresses in fluids. Physics Fluids, 9, 1709–1715 (1966)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Research Centre for Modeling and Simulation (RCMS)National University of Sciences and Technology (NUST)IslamabadPakistan

Personalised recommendations