Skip to main content
Log in

Surface effects of adsorption-induced resonance analysis on micro/nanobeams via nonlocal elasticity

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The governing differential equation of micro/nanbeams with atom/molecule adsorption is derived in the presence of surface effects using the nonlocal elasticity. The effects of the nonlocal parameter, the adsorption density, and the surface parameter on the resonant frequency of the micro/nanobeams are investigated. It is found that, in addition to the nonlocal parameter and the surface parameter, the bending rigidity and the adsorption-induced mass exhibit different behaviors with the increase in the adsorption density depending on the adatom category and the substrate material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goeders, K. M., Colton, J. S., and Bottomley, L. A. Microcantilevers: sensing chemical interactions via mechanical motion. Chem. Rev., 108, 522–542 (2008)

    Article  Google Scholar 

  2. Alvarez, M. and Lechuga, L. M. Microcantilever-based platforms as biosensing tools. Analyst, 135, 827–836 (2010)

    Article  Google Scholar 

  3. Eom, K., Park, H. S., Yoon, D. S., and Kwon, T. Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys. Rep., 503, 115–163 (2011)

    Article  Google Scholar 

  4. Hagan, M. F., Majumdar, A., and Chakraborty, A. K. Nanomechanical forces generated by surface grafted DNA. J. Phys. Chem. B, 106, 10163–10173 (2002)

    Article  Google Scholar 

  5. Dareing, D. W. and Thundat, T. Simulation of adsorption-induced stress of a microcantilever sensor. J. Appl. Phys., 97, 043526 (2005)

    Article  Google Scholar 

  6. Eom, K., Kwon, T. Y., Yoon, D. S., Lee, H. L., and Kim, T. S. Dynamical response of nanomechanical resonators to biomolecular interactions. Phys. Rev. B, 76, 113408 (2007)

    Article  Google Scholar 

  7. Huang, G. Y., Gao, W., and Yu, S. W. Model for the adsorption-induced change in resonance frequency of a cantilever. Appl. Phys. Lett., 89, 043506 (2006)

    Article  Google Scholar 

  8. Zang, J. and Liu, F. Theory of bending of Si nanocantilevers induced by molecular adsorption: a modified Stoney formula for the calibration of nanomechanochemical sensors. Nanotechnology, 18, 405501 (2007)

    Article  Google Scholar 

  9. Zang, J. and Liu, F. Modified Timoshenko formula for bending of ultrathin strained bilayer films. Appl. Phys. Lett., 92, 021905 (2008)

    Article  Google Scholar 

  10. Zhang, J. Q., Yu, S. W., Feng, X. Q., and Wang, G. F. Theoretical analysis of adsorption-induced microcantilever bending. J. Appl. Phys., 103, 093506 (2008)

    Article  Google Scholar 

  11. Zhang, J. Q., Yu, S. W., and Feng, X. Q. Theoretical analysis of resonance frequency change induced by adsorption. J. Phys. D: Appl. Phys., 41, 125306 (2008)

    Article  Google Scholar 

  12. Gheshlaghi, B. and Hasheminejad, S. M. Adsorption-induced resonance frequency shift in Timoshenko microbeams. Curr. Appl. Phys., 11, 1035–1041 (2011)

    Article  Google Scholar 

  13. Yi, X. and Duan, H. L. Surface stress induced by interactions of adsorbates and its effect on deformation and frequency of microcantilever sensors. J. Mech. Phys. Solids, 57, 1254–1266 (2009)

    Article  MATH  Google Scholar 

  14. Feng, L., Gao, F. L., Liu, M. H., Wang, S. B., Li, L. N., Shen, M., and Wang, Z. Y. Investigation of the mechanical bending and frequency shift induced by adsorption and temperature using microand nanocantilever sensors. J. Appl. Phys., 112, 013501 (2012)

    Article  Google Scholar 

  15. Wang, C. M., Zhang, Y. Y., Xiang, Y., and Reddy, J. N. Recent studies on buckling of carbon nanotubes. Appl. Mech. Rev., 63, 030804 (2010)

    Article  Google Scholar 

  16. Eringen, A. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys., 54, 4703–4710 (1983)

    Article  Google Scholar 

  17. Peddieson, J., Buchanan, G. R., and McNitt, R. P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci., 41, 305–312 (2003)

    Article  Google Scholar 

  18. Wang, Q., Zhou, G. Y., and Lin, K. C. Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct., 43, 6071–6084 (2006)

    Article  MATH  Google Scholar 

  19. Zhang, Y. Q., Liu, G. R., and Wang, J. S. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys. Rev. B, 70, 205430 (2004)

    Article  Google Scholar 

  20. Zhang, Y. Q., Liu, G. R., and Xie, X. Y. Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B, 71, 195404 (2005)

    Article  Google Scholar 

  21. Wang, K. F. and Wang, B. L. The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. EPL (Europhys. Lett.), 97, 66005 (2012)

    Article  Google Scholar 

  22. Juntarasaid, C., Pulngern, T., and Chucheepsakul, S. Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Physica E, 46, 68–76 (2012)

    Article  Google Scholar 

  23. Lee, H. L. and Chang, W. J. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys., 108, 093503 (2010)

    Article  Google Scholar 

  24. Lei, X. W., Natsuki, T., Shi, J. X., and Ni, Q. Q. Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos. Part B: Eng., 43, 64–69 (2011)

    Article  Google Scholar 

  25. Wang, K. F. and Wang, B. L. Vibration of nanoscale plates with surface energy via nonlocal elasticity. Physica E, 44, 448–453 (2011)

    Article  Google Scholar 

  26. Gheshlaghi, B. and Hasheminejad, S. M. Vibration analysis of piezoelectric nanowires with surface and small scale effects. Curr. Appl. Phys., 12, 1096–1099 (2012)

    Article  Google Scholar 

  27. Wang, L. Vibration analysis of fluid-conveying nanotubes with consideration of surface effects. Physica E, 43, 437–439 (2010)

    Article  Google Scholar 

  28. Wang, G. F. and Feng, X. Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett., 90, 231904 (2007)

    Article  Google Scholar 

  29. He, J. and Lilley, C. M. Surface effect on the elastic behavior of static bending nanowires. Nano Lett., 8, 1798–1802 (2008)

    Article  Google Scholar 

  30. Shenoy, V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B, 71, 094104 (2005)

    Article  Google Scholar 

  31. Abbasion, S., Rafsanjani, A., Avazmohammadi, R., and Farshidianfar, A. Free vibration of microscaled Timoshenko beams. Appl. Phys. Lett., 95, 143122 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-chen Deng  (邓子辰).

Additional information

Communicated by Zhu-feng YUE

Project supported by the National Basic Research Program of China (No. 2011CB610300), the 111 Project of China (No. B07050), the National Natural Science Foundation of China (Nos. 10972182, 11172239, and 10902089), the Doctoral Program Foundation of Education Ministry of China (No. 20106102110019), the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment of China (No.GZ0802), and the Doctorate Foundation of Northwestern Polytechnical University of China (No.CX201111)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Xj., Deng, Zc. Surface effects of adsorption-induced resonance analysis on micro/nanobeams via nonlocal elasticity. Appl. Math. Mech.-Engl. Ed. 34, 37–44 (2013). https://doi.org/10.1007/s10483-013-1651-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-013-1651-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation