Skip to main content
Log in

Lagrangian cell-centered conservative scheme

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a Lagrangian cell-centered conservative gas dynamics scheme. The piecewise constant pressures of cells arising from the current time sub-cell densities and the current time isentropic speed of sound are introduced. Multipling the initial cell density by the initial sub-cell volumes obtains the sub-cell Lagrangian masses, and dividing the masses by the current time sub-cell volumes gets the current time subcell densities. By the current time piecewise constant pressures of cells, a scheme that conserves the momentum and total energy is constructed. The vertex velocities and the numerical fluxes through the cell interfaces are computed in a consistent manner due to an original solver located at the nodes. The numerical tests are presented, which are representative for compressible flows and demonstrate the robustness and accuracy of the Lagrangian cell-centered conservative scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maire, P. H., Abgrall, R., Breil, J., and Ovadia, J. A cell-centered Lagrangian scheme for compressible flow problems. SIAM J. Sci. Comput., 29(4), 1781–1824 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Von Neumann, J. and Richtmyer, R. D. A method for the numerical calculations of hydrodynamics shocks. J. Appl. Phys., 21, 232–238 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wilkins, M. L. Calculation of elastic plastic flow. Methods in Computational Physics (ed. Alder, B.), Vol. 3, Academic Press, New York (1964)

    Google Scholar 

  4. Caramana, E. J. and Shashkov, M. J. Elimination of artificial grid distorsion and hourglass-type motions by means of Lagrangian subzonal masses and pressures. J. Comput. Phys., 142, 521–561 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caramana, E. J., Shashkov, M. J., and Whalen, P. P. Formulations of artificial viscosity for multidimensional shock wave computations. J. Comput. Phys., 144, 70–97 (1998)

    Article  MathSciNet  Google Scholar 

  6. Campbell, J. C. and Shashov, J. C. A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys., 172, 739–765 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caramana, E. J., Burton, D. E., Shashov, M. J., and Whalen, P. P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy. J. Comput. Phys., 146, 227–262 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Campbell, J. C. and Shashov, M. J. A compatible Lagrangian hydrodynamics algorithm for unstructured grids. Selcuk J. Appl. Math., 4(2), 53–70 (2003)

    MATH  Google Scholar 

  9. Scovazzi, G., Christon, M. A., Hughes, T. J. R., and Shadid, J. N. Stabilized shock hydrodynamics: I. a Lagrangian method. Comput. Methods Appl. Mech. Engrg., 196, 923–966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Scovazzi, G. Stabilized shock hydrodynamics: II. design and physical interpretation of the SUPG operator for Lagrangian computations. Comput. Methods Appl. Mech. Engrg., 196, 966–978 (2007)

    Google Scholar 

  11. Scovazzi, G., Love, E., and Shashkov, M. J. Multi-scale Lagrangian shock hydrodynamics on Q 1/P 0 finite elements: theoretical framework and two-dimensional computations. Comput. Methods Appl. Mech. Engrg., 197, 1056–1079 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Godunov, S. K., Zabrodine, A., Ivanov, M., Kraiko, A., and Prokopov, G. Résolution Numérique des Problèmes Multidimensionnels de la Dynamique des Gaz, Editions Mir, Moscow (1979)

    Google Scholar 

  13. Adessio, F. L., Carroll, D. E., Dukowicz, J. K., Johnson, J. N., Kashiwa, B. A., Maltrud, M. E., and Ruppel, H. M. Caveat: a Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip, Technical Report LA-10613-MS, Los Alamos National Laboratory (1986)

  14. Dukowicz, J. K. and Meltz, B. Vorticity errors in multidimensional Lagrangian codes. J. Comput. Phys., 99, 115–134 (1992)

    Article  MATH  Google Scholar 

  15. Desp’res, B. and Mazeran, C. Lagrangian gas dynamics in two dimensions and Lagrangian systems. Arch. Rational Mech. Anal., 178, 327–372 (2005)

    Article  MathSciNet  Google Scholar 

  16. Carré, G., Delpino, S., Desp’res, B., and Labourasse, E. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys., 228, 5160–5183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-wen Ge  (葛全文).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11172050)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, Qw. Lagrangian cell-centered conservative scheme. Appl. Math. Mech.-Engl. Ed. 33, 1329–1350 (2012). https://doi.org/10.1007/s10483-012-1625-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1625-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation