Skip to main content
Log in

Detailed investigation on single water molecule entering carbon nanotubes

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The behavior of a water molecule entering carbon nanotubes (CNTs) is studied. The Lennard-Jones potential function together with the continuum approximation is used to obtain the van der Waals interaction between a single-walled CNT (SWCNT) and a single water molecule. Three orientations are chosen for the water molecule as the center of mass is on the axis of nanotube. Extensive studies on the variations of force, energy, and velocity distributions are performed by varying the nanotube radius and the orientations of the water molecule. The force and energy distributions are validated by those obtained from molecular dynamics (MD) simulations. The acceptance radius of the nanotube for sucking the water molecule inside is derived, in which the limit of the radius is specified so that the nanotube is favorable to absorb the water molecule. The velocities of a single water molecule entering CNTs are calculated and the maximum entrance and the interior velocity for different orientations are assigned and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphite carbon. nature, 354, 56–58 (1991)

    Article  Google Scholar 

  2. Mitchell, D. T., Lee, S. B., Trofin, L., Li, N. C., Nevanen, T. K., Soderlund, H., and Martin, C. R. Smart nanotubes for bioseparations and biocatalysis. J. Am. Chem. Soc., 124(40), 11864–11865 (2002)

    Article  Google Scholar 

  3. Kohli, P., Wirtz, M., and Martin, C. R. Nanotube membrane based biosensors. Electroanalysis, 16(1–2), 9–18 (2004)

    Article  Google Scholar 

  4. Lee, S. M. and Lee, Y. H. A hydrogen storage mechanism in single-walled carbon nanotubes. Appl. Phys. Lett., 76(20), 2877–2879 (2000)

    Article  Google Scholar 

  5. Muthukumar, M. Polymer translocation through a hole. Chem. Phys., 111(22), 10371–10374 (1999)

    Google Scholar 

  6. Chen, H. B., Johnson, J. K., and Sholl, D. S. Transport diffusion of gases is rapid in flexible carbon nanotubes. J. Phys. Chem. B, 110(5), 1971–1975 (2006)

    Article  Google Scholar 

  7. Holt, J. K., Park, H. G., Wang, Y. M., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034–1037 (2006)

    Article  Google Scholar 

  8. Majumder, M., Chopra, N., Andrews, R., and Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. nature, 438, 44 (2005)

    Article  Google Scholar 

  9. Hummer, G., Rasaiah, J. C., and Noworyta, J. Water conduction through the hydrophobic channel of a carbon nanotube. nature, 414, 188–190 (2001)

    Article  Google Scholar 

  10. De Groot, B. L. and Grubmuller, H. Water permeation a cross biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science, 294(5550), 2353–2357 (2001)

    Article  Google Scholar 

  11. Tajkhorshid, E., Nollert, P., Jensen, M. O., Miercke, L. J. W., O’Connell, J., Stroud, R. M., and Schulten, K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science, 296(5567), 525–530 (2002)

    Article  Google Scholar 

  12. Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Heymann, J. B., Engel, A., and Fujiyoshi, Y. Structural determinants of water permeation through aquaporin-1. nature, 407, 599–605 (2000)

    Article  Google Scholar 

  13. Majumder, M., Chopra, N., Andrews, R., and Hinds, B. J. Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. nature, 438(44), 930 (2005)

    Article  Google Scholar 

  14. Wan, R. Z., Li, J. Y., Lu, H. J., and Fang, H. P. Controllable water channel gating of nanometer dimensions. J. Am. Chem. Soc., 127, 7166 (2005)

    Article  Google Scholar 

  15. Fang, H. P., Wan, R. Z., Gong, X. J., Lu, H. J., and Li, S. Y. Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications. J. Phys. D: Appl. Phys., 41(10), 103002 (2008)

    Article  Google Scholar 

  16. Sansom, M. S. P. and Biggin, P. C. Water at the nanoscale. nature, 414(8), 156–157 (2001)

    Article  Google Scholar 

  17. Gong, X. J., Li, J. Y., He, Z., Wan, R. Z., Lu, H. J., Wang, S., and Fang, H. P. Enhancement of water permeation across a nanochannel by the structure outside the channel. Phys. Rev. Lett., 101(25), 257801 (2008)

    Article  Google Scholar 

  18. Cambré, S., Schoeters, B., Luyckx, S., Goovaerts, E., and Wenseleers, W. Experimental observation of single-file water filling of thin SWCNT down to chiral index (5,3). Phys. Rev. Lett., 104(20), 207401 (2010)

    Article  Google Scholar 

  19. Qi, W. P., Tu, Y. S., Wan, R. Z., and Fang, H. P. Orientations of special water dipoles that accelerate water molecules exiting from carbon nanotube. Appl. Math. Mech. -Engl. Ed., 32(9), 1101–1108 (2011) DOI 10.1007/s10483-011-1484-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Zuo, G., Shen, R., Ma, S., and Guo, W. Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel. ACS Nano, 4(1), 205–210 (2010)

    Article  Google Scholar 

  21. Wang, L., Zhao, J., Li, F., Fang, H., and Lu, J. P. First-principles study of water chains encapsulated in SWCNT. J. Phys. Chem. C, 113, 5368–5375 (2009)

    Article  Google Scholar 

  22. Hilder, T. A. and Hill, J. M. Maximum velocity for a single water molecule entering a carbon nanotube. J. Nanosci. Nanotech., 9(2), 1403–1407 (2009)

    Article  Google Scholar 

  23. Hilder, T. A. and Hill, J. M. Continuous versus discrete for interacting carbon nanostructures. J. Phys. A: Math. Theor., 40(14), 3851–3868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 37, 6991–7000 (1988)

    Article  Google Scholar 

  25. Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor-deposition of diamond films. Phys. Rev. B, 42, 9458–9471 (1990)

    Article  Google Scholar 

  26. Allen, M. P. and Tildesley, D. J. Computer Simulation of Liquids, Oxford Science Publications, New York (1986)

    Google Scholar 

  27. Hoover, W. G. Canonical dynamics: phase-space distributions. Phys. Rev. A, 31(3), 1695–1697 (1985)

    Article  Google Scholar 

  28. Cox, B. J., Thamwattana, N., and Hill, J. M. Mechanics of atoms and fullerenes in single-walled carbon nanotubes, I. acceptance and suction energies. Proc. R. Soc. A, 463, 461–477 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, R., Kazemi, E. Detailed investigation on single water molecule entering carbon nanotubes. Appl. Math. Mech.-Engl. Ed. 33, 1287–1300 (2012). https://doi.org/10.1007/s10483-012-1622-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1622-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation