Skip to main content
Log in

Generation of linear and nonlinear waves in numerical wave tank using clustering technique-volume of fluid method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) numerical model is developed for the wave simulation and propagation in a wave flume. The fluid flow is assumed to be viscous and incompressible, and the Navier-Stokes and continuity equations are used as the governing equations. The standard k-ɛ model is used to model the turbulent flow. The Navier-Stokes equations are discretized using the staggered grid finite difference method and solved by the simplified marker and cell (SMAC) method. Waves are generated and propagated using a piston type wave maker. An open boundary condition is used at the end of the numerical flume. Some standard tests, such as the lid-driven cavity, the constant unidirectional velocity field, the shearing flow, and the dam-break on the dry bed, are performed to valid the model. To demonstrate the capability and accuracy of the present method, the results of generated waves are compared with available wave theories. Finally, the clustering technique (CT) is used for the mesh generation, and the best condition is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Contento, G. Numerical wave tank computations of nonlinear motions of two-dimensional arbitrarily shaped free floating bodies. Ocean Engineering, 27, 531–556 (2000)

    Article  Google Scholar 

  2. Grilli, S. T., Vogelmenn, S., and Watts, P. Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering Analysis with Boundary Elements, 26, 301–313 (2002)

    Article  MATH  Google Scholar 

  3. Fochesato, C., Grilli, S., and Dias, F. Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion, 44, 395–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ducrozet, G., Bonnefoy, F., Le Touzé, D., and Ferrant, P. A modified high-order spectral method for wavemaker modeling in a numerical wave tank. European Journal of Mechanics B/Fluids, 34, 19–34 (2012)

    Article  MATH  Google Scholar 

  5. Park, J. C., Kim, M. H., Miyata, H., and Chun, H. H. Fully nonlinear numerical wave tank (NWT) simulations and wave run-up prediction around 3D structures. Ocean Engineering, 30, 1969–1996 (2003)

    Article  Google Scholar 

  6. Li, Y. and Lin, M. Regular and irregular wave impacts on floating body. Ocean Engineering, 42, 93–101 (2012)

    Article  Google Scholar 

  7. Rudman, M. Volume-tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24, 671–691 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Troch, P. and de Rouck, J. An active wave generating-absorbing boundary condition for VOF type numerical model. Coastal Engineering, 38, 223–247 (1999)

    Article  Google Scholar 

  9. Choi, J. W. and Yoon, S. B. Numerical simulation using momentum source wave-maker applied RANS equation model. Coastal Engineering, 56, 1043–1060 (2009)

    Article  Google Scholar 

  10. Zhao, X. Z., Hu, C. H., and Sun, Z. C. Numerical simulation of extreme wave generation using VOF method. Journal of Hydrodynamics, 22, 466–477 (2010)

    Article  Google Scholar 

  11. Schäffer, H. A. and Steenberg, C. M. Second-order wavemaker theory for multidirectional waves. Ocean Engineering, 30, 1203–1231 (2003)

    Article  Google Scholar 

  12. Teng, B. and Ning, D. Z. A simplified model for extreme-wave kinematics in deep sea. Journal of Marine Science and Application, 8, 27–32 (2009)

    Article  Google Scholar 

  13. Wei, G., Le, J. C., and Dai, S. Q. Surface effects of internal wave generated by a moving source in a two-layer fluid of finite depth. Applied Mathematics and Mechanics (English Edition), 24(9), 1025–1040 (2003) DOI 10.1007/BF02437635

    Article  MathSciNet  MATH  Google Scholar 

  14. Lara, J. L., Garcia, N., and Losada, I. J. RANS modelling applied to random wave interaction with submerged permeable structure. Coastal Engineering, 113, 396–417 (2006)

    Google Scholar 

  15. Lin, P. and Karunarathna, S. A. S. Numerical study of solitary wave interaction with porous breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering, 133(5), 352–363 (2007)

    Article  Google Scholar 

  16. Shin, S., Bae, S. Y., Kim, I. C., Kim, Y. J., and Yoo, H. K. Simulation of free surface flows using the flux-difference splitting scheme on the hybrid Cartesian/immersed boundary method. International Journal for Numerical Methods in Fluids, 68, 360–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rafei, R. Numerical Solution of Incompressible 3 D Turbulent Flow in a Spiral Channel, M. Sc. dissertation, Amirkabir University of Technology (2004)

  18. Li, C. W. and Zang, Y. F. Simulation of free surface recirculating flows in semi-enclosed water bodies by a k-w model. Applied Mathematical Modeling, 22, 153–164 (1998)

    Article  MATH  Google Scholar 

  19. Gao, H., Gu, H. Y., and Guo, L. J. Numerical study of stratified oil-water two-phase turbulent flow in a horizontal tube. International Journal of Heat and Mass Transfer, 46, 749–754 (2003)

    Article  MATH  Google Scholar 

  20. Ren, B. and Wang, Y. Numerical simulation of random wave slamming on structures in the splash zone. Ocean Engineering, 31, 547–560 (2004)

    Article  Google Scholar 

  21. Shen, Y. M., Ng, C. O., and Zheng, Y. H. Simulation of wave propagation over a submerged bar using the VOF method with a two-equation k-ɛ turbulence modeling. Ocean Engineering, 31, 87–95 (2004)

    Article  Google Scholar 

  22. Mirbagheri, S. M. H., Dadashzadeh, M., Serajzadeh, S., Taheri, A. K., and Davami, P. Modeling the effect of mould wall roughness on the melt flow simulation in casting process. Applied Mathematical Modeling, 28, 933–956 (2004)

    Article  MATH  Google Scholar 

  23. Geuyffier, D., Li, J., Nadim, A., Scardovelli, R., and Zaleski, S. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 152, 423–456 (1999)

    Article  Google Scholar 

  24. Harvie, D. J. E. and Fletcher, D. F. A new volume of fluid advection algorithm: the defined donating region scheme. International Journal for Numerical Methods in Fluids, 35, 151–172 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ketabdari, M. J., Nobari, M. R. H., and Moradi-Larmaei, M. Simulation of waves group propagation and breaking in coastal zone using a Navier-Stokes solver with an improved VOF free surface treatment. Applied Ocean Research, 30, 130–143 (2008)

    Article  Google Scholar 

  26. Hur, D. S. and Mizutani, M. Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coastal Engineering, 47, 329–345 (2003)

    Article  Google Scholar 

  27. Duff, E. S. Fluid Flow Aspects of Solidification Modeling, Simulation of Low Pressure Die Casting, Ph. D. dissertation, University of Queenland (1999)

  28. Ghia, U., Ghia, K. N., and Shin, C. T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  29. Scardovelli, R. and Zaleski, S. Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection. International Journal of Numerical Methods in Fluids, 41, 251–274 (2003)

    Article  MATH  Google Scholar 

  30. Martin, J. C. and Moyce, W. J. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transaction of the Royal Society of London, 244, 312–324 (1982)

    Google Scholar 

  31. Boussinesq, M. J. Théorie de l’intumescence liquide, appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus de l’Académie des Scinces, 72, 755–759 (1871)

    MATH  Google Scholar 

  32. Rayleigh, L. On waves. Philosophical Magazine, 1, 257–279 (1876)

    Article  MATH  Google Scholar 

  33. Clamond, D. and Germain, J. P. Interaction between a Stokes wave packet and a solitary wave. European Journal of Mechanics B/Fluids, 18, 67–91 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Temperville, A. Contribution à l’étude des Ondes de Gravité en Eau Peu Profonde, Thèse d’Etat, Université Joseph Fourier (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Ketabdari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghi, H., Ketabdari, M.J. & Booshi, S. Generation of linear and nonlinear waves in numerical wave tank using clustering technique-volume of fluid method. Appl. Math. Mech.-Engl. Ed. 33, 1179–1190 (2012). https://doi.org/10.1007/s10483-012-1614-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1614-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation