Skip to main content
Log in

Large-eddy simulation of fluid mixing in tee with sintered porous medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Mixing processes of hot and cold fluids in a tee with and without sintered copper spheres are simulated by FLUENT using the large-eddy simulation (LES) turbulent flow model and the sub-grid scale (SGS) Smagorinsky-Lilly (SL) model with buoyancy. Comparisons of numerical results of the two cases with and without sintered copper spheres show that the porous medium significantly reduces velocity and temperature fluctuations because the porous medium can effectively restrict the fluid flow and enhance heat transfer. The porous medium obviously increases the pressure drop in the main duct. The porous medium reduces the power spectrum density (PSD) of temperature fluctuations in the frequency range from 1 Hz to 10 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, W. Y., Lu, T., Jiang, P. X., Guo, Z. J., and Wang, K. S. Large-eddy simulation of hot and cold fluids mixing in a T-junction for predicting thermal fluctuations. Applied Mathematics and Mechanics (English Edition), 30(11), 1379–1392 (2009) DOI 10.1007/s10483-009-1104-7

    Article  MathSciNet  MATH  Google Scholar 

  2. Kuhn, S., Braillard, O., Niceno, B., and Prasser, H. M. Computational study of conjugate heat transfer in T-junctions. Nuclear Engineering and Design, 240(6), 1548–1557 (2010)

    Article  Google Scholar 

  3. Lee, J. I., Hu, L. W., Saha, P., and Kazimi, M. S. Numerical analysis of thermal striping induced high cycle thermal fatigue in a mixing tee. Nuclear Engineering and Design, 239(5), 833–839 (2009)

    Article  Google Scholar 

  4. Frank, T., Lifante, C., Prasser, H. M., and Menter, F. Simulation of turbulent and thermal mixing in T-junctions using URANS and scale-resolving turbulence models in ANSYS CFX. Nuclear Engineering and Design, 240(9), 2313–2328 (2010)

    Article  Google Scholar 

  5. Metzner, K. J. and Wilke, U. European THERFAT project-thermal fatigue evaluation of piping system “tee”-connections. Nuclear Engineering and Design, 235(2–4), 473–484 (2005)

    Article  Google Scholar 

  6. Kuczaj, A. K., Komen, E. M. J., and Loginov, M. S. Large-eddy simulation study of turbulent mixing in a T-junction. Nuclear Engineering and Design, 240(9), 2116–2122 (2010)

    Article  Google Scholar 

  7. Hu, L. W. and Kazimi, M. S. LES benchmark study of high cycle temperature fluctuations caused by thermal striping in a mixing tee. International Journal of Heat and Fluid Flow, 27(1), 54–64 (2006)

    Article  Google Scholar 

  8. Simoneau, J. P., Champigny, J., and Gelineau, O. Applications of large eddy simulations in nuclear field. Nuclear Engineering and Design, 240(2), 429–439 (2010)

    Article  Google Scholar 

  9. Whitaker, S. Simultaneous heat, mass, and momentum transfer in porous medium: a theory of drying. Advances in Heat Transfer, 13, 119–203 (1977)

    Article  Google Scholar 

  10. Jang, J. Y. and Chen, J. L. Forced convection in a parallel plate channel partially filled with a high porosity medium. International Communications in Heat and Mass Transfer, 19(2), 263–273 (1992)

    Article  Google Scholar 

  11. Saito, M. B. and de Lemos, M. J. S. A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous medium. International Journal of Heat and Mass Transfer, 53(11–12), 2424–2433 (2010)

    Article  MATH  Google Scholar 

  12. Yang, Y. T. and Hwang, M. L. Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous medium. International Journal of Heat and Mass Transfer, 52(13–14), 2956–2965 (2009)

    Article  MATH  Google Scholar 

  13. Huang, Z. F., Nakayama, A., Yang, K., Yang, C., and Liu, W. Enhancing heat transfer in the core flow by using porous medium insert in a tube. International Journal of Heat and Mass Transfer, 53(5–6), 1164–1174 (2010)

    Article  MATH  Google Scholar 

  14. Amiri, A. and Vafai, K. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous medium. International Journal of Heat and Mass Transfer, 37(6), 939–954 (1994)

    Article  Google Scholar 

  15. Quintard, M. and Whitaker, S. Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. International Journal of Heat and Mass Transfer, 38(15), 2779–2796 (1995)

    Article  MATH  Google Scholar 

  16. Whitaker, S. Improved constraints for the principle of local thermal equilibrium. Industrial and Engineering Chemistry Research, 30(5), 983–997 (1991)

    Article  MathSciNet  Google Scholar 

  17. Lu, T., Jiang, P. X., Guo, Z. J., Zhang, Y. W., and Li, H. Large-eddy simulations (LES) of temperature fluctuations in a mixing tee with/without a porous medium. International Journal of Heat and Mass Transfer, 53(21–22), 4458–4466 (2010)

    Article  MATH  Google Scholar 

  18. Saito, M. B. and de Lemos, M. J. S. Interfacial heat transfer coefficient for non-equilibrium convective transport in porous medium. International Communications in Heat and Mass Transfer, 32(5), 666–676 (2005)

    Article  Google Scholar 

  19. Saito, M. B. and de Lemos, M. J. S. Laminar heat transfer in a porous channel simulated with a two-energy equation model. International Communications in Heat and Mass Transfer, 36(10), 1002–1007 (2009)

    Article  Google Scholar 

  20. Kuwahara, F., Shirota, M., and Nakayama, A. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous medium. International Journal of Heat and Mass Transfer, 44(6), 1153–1159 (2001)

    Article  MATH  Google Scholar 

  21. Jiang, P. X., Meng, L., Ma, Y. C., and Ren, Z. P. Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels. International Journal of Heat and Mass Transfer, 47(10–11), 2073–2083 (2004)

    Article  MATH  Google Scholar 

  22. Jiang, P. X. and Ren, Z. P. Numerical investigation of forced convection heat transfer in porous medium using a thermal non-equilibrium model. International Journal of Heat and Fluid Flow, 22(1), 102–110 (2001)

    Article  Google Scholar 

  23. Wakao, N., Kaguei, S., and Funazkri, T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed bed. Chemical Engineering Science, 34(3), 325–336 (1979)

    Article  Google Scholar 

  24. Jiang, P. X. and Lu, X. C. Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels. International Journal of Heat and Mass Transfer, 49(9–10), 1685–1695 (2006)

    Article  MATH  Google Scholar 

  25. Kuwahara, F., Yamane, T., and Nakayama, A. Large eddy simulation of turbulent flow in porous medium. International Communications in Heat and Mass Transfer, 33(4), 411–418 (2006)

    Article  Google Scholar 

  26. Fukushima, N., Fukagata, K., and Kasagi, N. Numerical and experimental study on turbulent thermal mixing in a T-junction flow. The 6th ASME-JSME Thermal Engineering Joint Conference, CD-ROM Publicaton, Hawaii (2003)

    Google Scholar 

  27. Pope, S. B. Turbulence Flow, Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  28. Temmerman, L., Leschziner, M. A., Mellen, C. P., and Fröhlich, J. Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. International Journal of Heat and Fluid Flow, 24(2), 157–180 (2003)

    Article  Google Scholar 

  29. Majander, P. and Siikonen, T. Large-eddy simulation of a round jet in a cross-flow. International Journal of Heat and Fluid Flow, 27(3), 402–415 (2006)

    Article  Google Scholar 

  30. Wegner, B., Huai, Y., and Sadiki, A. Comparative study of turbulent mixing in jet in cross-flow configurations using LES. International Journal of Heat and Fluid Flow, 25(5), 767–775 (2004)

    Article  Google Scholar 

  31. Smagorinsky, J. General circulation experiments with the primitive equations: I. the basic experiment. Monthly Weather Review, 91(3), 99–164 (1963)

    Article  Google Scholar 

  32. Lilly, D. K. On the Application of the Eddy Viscosity Concept in the Inertial Subrange of Turbulence, National Center for Atmospheric Research, NCAR-123, Colorado (1966)

  33. Wang, Y., Yuan, G., Yoon, Y. K., Allen, M. G., and Bidstrup, S. A. Large eddy simulation (LES) for synthetic jet thermal management. International Journal of Heat and Mass Transfer, 49(13–14), 2173–2179 (2006)

    Article  MATH  Google Scholar 

  34. Kimura, K. Thermal striping in mixing tees with hot and cold water (type A: characteristics of flow visualization and temperature fluctuations in collision type mixing tees with same pipe diameter). The Third Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety, CDROM Publicaton, Korea (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lu  (卢涛).

Additional information

Project supported by the National Natural Science Foundation of China (No. 50906002), the National Basic Research Program of China (No. 2011CB706900), the Research Fund for the Doctoral Program of Higher Education of China (No. 20090010110006), and the Beijing Novel Program of China (No. 2008B16)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Yw., Lu, T., Jiang, Px. et al. Large-eddy simulation of fluid mixing in tee with sintered porous medium. Appl. Math. Mech.-Engl. Ed. 33, 911–922 (2012). https://doi.org/10.1007/s10483-012-1594-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1594-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation