Skip to main content

Advertisement

Log in

Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The problem of laminar fluid flow, which results from the stretching of a vertical surface with variable stream conditions in a nanofluid due to solar energy, is investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of thermal stratification. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations, namely, the scaling group of transformations. An exact solution is obtained for the translation symmetrys, and the numerical solutions are obtained for the scaling symmetry. This solution depends on the Lewis number, the Brownian motion parameter, the thermal stratification parameter, and the thermophoretic parameter. The conclusion is drawn that the flow field, the temperature, and the nanoparticle volume fraction profiles are significantly influenced by these parameters. Nanofluids have been shown to increase the thermal conductivity and convective heat transfer performance of base liquids. Nanoparticles in the base fluids also offer the potential in improving the radiative properties of the liquids, leading to an increase in the efficiency of direct absorption solar collectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

nanoparticle volume fraction

C f :

skin-fraction coefficient

C w :

nanoparticle volume fraction at the wall

C :

ambient nanoparticle volume fraction

c p :

specific heat at constant pressure

D B :

Brownian diffusion coefficient

D T :

thermophoretic diffusion coefficient

f :

dimensionless stream function

g :

acceleration due to gravity

k :

thermal conductive

Le :

Lewis number

M :

magnetic parameter

Nb :

Brownian motion parameter

n :

thermal stratification parameter

Nt :

thermophoresis parameter

Nr :

buoyancy ratio

Pr :

Prandtl number

P :

pressure

Ra :

local Rayleigh number

S :

suction/injection parameter

T :

temperature of the fluid

T w :

temperature at the wall

T :

ambient temperature

\(\bar v\) :

velocity vector

u, υ :

velocity components along the x- and y-axes

U(x):

uniform velocity of the free stream flow

V 0 :

velocity of suction/injection

α :

thermal conductivity

β :

coefficient of thermal expansion

θ :

dimensionless temperature

ϕ :

dimensionless nanoparticle volume fraction

η :

similarity variable

μ :

dynamic viscosity

ρ f :

density of the base fluid

ρ p :

nanoparticle mass density

(ρc)f :

heat capacity of the base fluid

τ :

heat capacity ratio

ν :

kinematic viscosity

ψ :

stream function

References

  1. Todd, P., Otanicar, P. P. E., and Jay Golden, S. Optical properties of liquids for direct absorption solar thermal energy systems. Solar Energy, 83(4), 969–977 (2009)

    Google Scholar 

  2. Richard, K. S. and Lee, S. M. 800 hours of operational experience from a 2 kW solar dynamic system. Space Technology and Application International Forum, Mohamed S EI-Genk, New Mexico, 1426–1431 (1999)

    Google Scholar 

  3. Odeh, S. D., Behnia, M., and Morrison, G. L. Performance evaluation of solar thermal electric generation systems. Energy Conversion and Management, 44(4), 2425–2443 (2003)

    Article  Google Scholar 

  4. Clausing, A. Analysis of convective losses from cavity solar central receivers. Solar Energy, 27(1), 295–300 (1981)

    Article  Google Scholar 

  5. Dehghan, A. A. and Behnia, M. Combined natural convection conduction and radiation heat transfer in a discretely heated open cavity. Journal of Heat Transfer, 118(1), 56–65 (1996)

    Article  Google Scholar 

  6. Muftuoglu, A. and Bilgen, E. Heat transfer in inclined rectangular receivers for concentrated solar radiation. International Communications in Heat and Mass Transfer, 35(5), 551–556 (2008)

    Article  Google Scholar 

  7. Kennedy, C. E. Reciew in Mid-to High-Ternperature Solar Selective Absorber Materials, National Renewable Energy Laboratory, Coloraclo (2002)

    Book  Google Scholar 

  8. Trieb, F. and Nitsch, J. Recommendations for the market introduction of solar thermal power stations. Renewable Energy, 14(1), 17–22 (1998)

    Article  Google Scholar 

  9. Lin, P. F. and Lin, J. Z. Prediction of nanoparticle transport and deposition in bends. Applied Mathematics and Mechanics (English Edition), 30(8), 957–968 (2009) DOI 10.1007/s10483-009-0802-z

    Article  MATH  Google Scholar 

  10. Lin, J. Z., Lin, P. F., and Chen, H. J. Research on the transport and deposition of nanoparticles in a rotating curved pipe. Physics of Fluids, 21, 122001 (2009)

    Article  Google Scholar 

  11. Masuda, H., Ebata, A., Teramae, K., and Hishinuma, N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei, 7(2), 227–233 (1993)

    Article  Google Scholar 

  12. Buongiorno, J. and Hu, W. Nanofluid coolants for advanced nuclear power plants. Proceedings of International Congress on Advances in Nuclear Power Plants, Carran Associate, lnc., Seoul, 5705 (2005)

    Google Scholar 

  13. Buongiorno, J. Convective transport in nanofluids. ASME Journal of Heat Transfer, 128(1), 240–250 (2006)

    Article  Google Scholar 

  14. Kuznetsov, A. V. and Nield, D. A. Natural convective boundary layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243–247 (2010)

    Article  MathSciNet  Google Scholar 

  15. Nield, D. A. and Kuznetsov, A. V. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52(25–26), 5792–5795 (2009)

    Article  MATH  Google Scholar 

  16. Cheng, P. and Minkowycz, W. J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. Journal of Geophysical Research, 82, 2040–2044 (1977)

    Article  Google Scholar 

  17. Oberlack, M. Similarity in non-rotating and rotating turbulent pipe flows. Journal of Fluid Mechanics, 379, 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bluman, G. W. and Kumei, M. Symmetries and Differential Equations, Springer-Verlag, New York (1989)

    Book  MATH  Google Scholar 

  19. Pakdemirli, M. and Yurusoy, M. Similarity transformations for partial differential equations. SIAM Review, 40, 96–101 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Aminossadati, S. M. and Ghasemi, B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. European Journal of Mechanics-B/Fluids, 28, 630–640 (2009)

    Article  MATH  Google Scholar 

  21. Akira, N. and Hitoshi, K. Similarity solutions for buoyancy induced flows over a non-isothermal curved surface in a thermally stratified porous medium. Applied Scientific Research, 46(1), 309–314 (1989)

    MATH  Google Scholar 

  22. Brewster, M. Q. Thermal Radiative Transfer Properties, John Wiley and Sons, New York (1972)

    Google Scholar 

  23. Gill, S. A process for the step-by-step integration of differential equations in an automatic digital computing machine. Mathematical Proceedings of the Cambridge Philosophical Society, 47(1), 96–108 (1951)

    Article  MATH  Google Scholar 

  24. Khan, W. A. and Pop, I. Boundary layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(5), 2477–2483 (2010)

    Article  MATH  Google Scholar 

  25. Wang, C. Y. Free convection on a vertical stretching surface. ZAMM Journal of Applied Mathematics and Mechanics, 69(3), 418–420 (1989)

    Article  MATH  Google Scholar 

  26. Gorla, R. S. R. and Sidawi, I. Free convection on a vertical stretching surface with suction and blowing. Journal of Applied Science Research, 52(1), 247–257 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kandasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anbuchezhian, N., Srinivasan, K., Chandrasekaran, K. et al. Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Appl. Math. Mech.-Engl. Ed. 33, 765–780 (2012). https://doi.org/10.1007/s10483-012-1585-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1585-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation