Skip to main content
Log in

Computational study of combined effects of conduction-radiation and hydromagnetics on natural convection flow past magnetized permeable plate

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The computational study of the combined effects of radiation and hydromagnetics on the natural convection flow of a viscous, incompressible, and electrically conducting fluid past a magnetized permeable vertical plate is presented. The governing non-similar equations are numerically solved by using a finite difference method for all values of the suction parameter ξ and the asymptotic solution for small and large values of ξ. The effects of varying the Prandtl number Pr, the magnetic Prandtl number Pr m, the magnetic force parameter S, the radiation parameter R d, and the surface temperature θ w on the coefficients of the skin friction, the rate of heat transfer, and the current density are shown graphically and in tables. An attempt is made to examine the effects of the above mentioned physical parameters on the velocity profile, the temperature distribution, and the transverse component of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H 0 :

reference magnetic field velocity

H :

free stream magnetic field

S :

magnetic field parameter

f :

transformed stream function

Pr m :

magnetic Prandtl number

Re x :

local Reynolds number

Gr x :

local Grashof number

C fx :

skinfriction

H x :

magnetic field along the surface

H y :

magnetic field normal to the surface

Nu x :

local Nusselt number

ū :

dimensional axial velocity, m·s−1

\(\bar v\) :

dimensional normal velocity, m·s−1

\(\bar T_w\) :

wall temperature, K

\(\bar T_\infty\) :

ambient fluid temperature, K

V 0 :

surface mass flux

R d :

Plank number (conduction-radiation parameter)

\(\bar x\) :

axial distance, m

\(\bar y\) :

normal distance, m

g :

acceleration due to gravity, m·s−2

ψ :

fluid stream function, m2·s−1

ϕ :

transformed stream function for the magnetic field

ξ :

transpiration parameter

α :

thermal diffusivity, m2·s−1

μ :

dynamical viscosity, kg·m−1·s−1

η :

similarity transformation

ν :

kinematic viscosity, m2·s−1

θ :

dimensionless temperature function

θ w :

surface temperature ratio to the ambient fluid

ρ :

density of the fluid, kg·m−3

σ :

electrical conductivity

σ s :

Stefan-Boltzman constant

γ :

magnetic diffusion

β :

coefficient of cubical expansion

\(\bar \mu\) :

magnetic permibility

w:

wall condition

∞:

ambient condition

References

  1. Greenspan, H. P. and Carrier, G. F. The magnetohydrodynamic flow past a flat plate. Journal of Fluid Mechanics, 6, 77–96 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Davies, T. V. The magnetohydrodynamic boundary layer in two-dimensional steady flow past a semi-infinite flat plate, part I, uniform conditions at infinity. Proceedings of the Royal Society of London, Series A, 273, 496–507 (1963)

    Article  MATH  Google Scholar 

  3. Davies, T. V. The magnetohydrodynamic boundary layer in two-dimensional steady flow past a semi-infinite flat plate, part III, influence of adverse magneto-dynamic pressure gradient. Proceedings of the Royal Society of London, Series A, 273, 518–537 (1963)

    Article  Google Scholar 

  4. Gribben, R. J. Magnetohydrodynamic stagnation-point flow. Quarterly Journal of Mechanics and Applied Mathematics, 18(5), 357–384 (1963)

    MathSciNet  Google Scholar 

  5. Gribben, R. J. The magnetohydrodynamic boundary layer in the presence of a pressure gradient. Proceedings of the Royal Society of London, Series A, 287, 123–141 (1965)

    Article  MATH  Google Scholar 

  6. Ramamoorthy, P. Heat transfer in hydromagnetics. Quarterly Journal of Mechanics and Applied Mathematics, 18(1), 31–40 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tan, C. W. and Wang, C. T. Heat transfer in aligned-field magnetohydrodynamic flow past a flat plate. International Journal of Heat and Mass Transfer, 11, 319–329 (1967)

    Article  Google Scholar 

  8. Hildyard, T. Falkner-Skan problem in magnetohydrodynamics. Physics of Fluids, 15, 1023–1027 (1972)

    Article  MATH  Google Scholar 

  9. Ingham, D. B. The magnetogasdynamic boundary layer for a thermally conducting plate. Quarterly Journal of Mechanics and Applied Mathematics, 20, 347–364 (1967)

    Article  MATH  Google Scholar 

  10. Glauert, M. B. The boundary layer on a magnetized plate. Journal of Fluid Mechanics, 12, 625–638 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chawla, S. S. Fluctuating boundary layer on a magnetized plate. Proceedings of the Cambridge Philosophical Society, 63, 513–525 (1967)

    Article  MATH  Google Scholar 

  12. Cess, R. D. The effect of radiation upon forced convection heat transfer. Applied Scientific Research, Section A, 10, 430–438 (1962)

    Article  Google Scholar 

  13. Sparrow, E. M. and Lin, S. H. Boundary layers with prescribed heat flux-applications to simultaneous convection and radiation. International Journal of Heat and Mass Transfer, 8, 437–448 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin, R. C. and Cebeci, T. Solution of the Equations of the Compressible Laminar Boundary Layers with Surface Radiation, Douglas Report, No.DAC-33482, Los Angles, California (1966)

  15. Perlmutter, M. and Siegel, R. Heat transfer by combined forced convection and thermal radiation in a heated tube. Journal of Heat Transfer, 84, 301–311 (1962)

    Article  Google Scholar 

  16. Siegel, R. and Keshock, E. G. Wall Temperature in a Tube with Forced Convection, Internal Radiation Exchange, and Axial Wall Conduction, NASA, Washington, D. C. (1964)

    Google Scholar 

  17. Chen, J. C. Laminar heat transfer in a tube with non linear radiant heat flux boundary conditions. International Journal of Heat and Mass Transfer, 9, 433–440 (1966)

    Article  MATH  Google Scholar 

  18. Dussan, B. I. and Irvine, T. F. Laminar heat transfer in a round tube with radiating flux at the outer wall. Proceedings of the Third International Heat Transfer Conference, Chicago, 184–189 (1966)

  19. Thorsen, R. S. Heat transfer in a tube with forced convection, internal radiation exchange, axial wall heat conduction and arbitrary wall heat generation. International Journal of Heat and Mass Transfer, 12, 1182–1187 (1969)

    Article  Google Scholar 

  20. Thorsen, R. S. and Kanchanagom, D. The influence of internal radiation exchange arbitrary wall heat generation and wall heat conduction on heat transfer in laminar and turbulent flows. Proceedings of the Fourth International Heat Transfer Conference, Paris, 1–10 (1970)

  21. Liu, S. T. and Thorsen, R. S. Combined forced convection and radiation heat transfer in asymmetrically heated parallel plates. Proceedings of the Fourth International Heat Transfer and Fluid Mechanics Institute, Stanford University Press, 32–44 (1970)

  22. Chen, T. S., Armaly, B., and Ali, M. M. Natural convection radiation interaction in boundary layer flow over horizontal surface. AIAA Journal, 22, 1797–1803 (1984)

    Article  MATH  Google Scholar 

  23. Arpaci, V. S. Effect of thermal radiation with free convection from a heated vertical plate. International Journal of Heat and Mass Transfer, 11, 871–881 (1972)

    Article  Google Scholar 

  24. Cheng, E. H. and Ozisik, M. N. Radiation with free convection in an absorbing, emitting and scattering medium. International Journal of Heat and Mass Transfer, 15, 1243–1252 (1972)

    Article  Google Scholar 

  25. Sparrow, E. M. and Cess, R. D. Radiation Heat Transfer, Hemisphere Publishing Corporation, Washington, 255–271 (1978)

    Google Scholar 

  26. Soundalgekar, V. M., Takhar, H. S., and Vighnesam, N. V. The combined free and forced convection flow past a semi infinite plate with variable surface temperature. Nuclear Engineering and Design, 110, 95–98 (1960)

    Article  Google Scholar 

  27. Hossain, M. A. and Takhar, H. S. Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Heat and Mass Transfer, 31, 243–248 (1996)

    Article  Google Scholar 

  28. Aboeldahab, E. M. and Gendy, M. S. E. Radiation effect on MHD-convection flow of a gas past a semi-infinite vertical plate with variable thermophysical properties for high temperature differences. Can. J. Phys., 80, 1609–1619 (2002)

    Article  Google Scholar 

  29. Mebine, P. and Adigio, E. M. Unsteady free convection flow with thermal radiation past a vertical porous plate with Newtonian heating. Turk. J. Phys., 33, 109–119 (2009)

    Google Scholar 

  30. Palani, G. and Abbas, I. A. Free convection MHD flow with thermal radiation from an impulsively-started vertical plate. Nonlinear Analysis: Modelling and Control, 14, 73–84 (2009)

    MATH  Google Scholar 

  31. Sparrow, E. M. and Cess, R. D. Free convection with blowing or suction. Journal of Heat Transfer, 83, 387–396 (1961)

    Article  Google Scholar 

  32. Merkin, H. J. The effects of blowing and suction on free convection boundary layers. International Journal of Heat and Mass Transfer, 18, 237–244 (1975)

    Article  MATH  Google Scholar 

  33. Clarke, J. F. Transpiration and natural convection: the vertical plate problem. Journal of Fluid Mechanics, 57, 45–61 (1973)

    Article  MATH  Google Scholar 

  34. Vedhanayagam, M., Altenkrich, R. A., and Eichhorn, R. A transformation of the boundary layer equations for free convection past a vertical flat plate with arbitrary blowing and wall temperature variations. International Journal of Heat and Mass Transfer, 23, 1286–1288 (1980)

    Article  Google Scholar 

  35. Clarke, J. F. and Riley, N. Natural convection induced in a gas by the presence of a hot porous horizontal surface. Quarterly Journal of Mechanics and Applied Mathematics, 28, 373–396 (1975)

    Article  MATH  Google Scholar 

  36. Gupta, A. S., Misra, J. C., and Reza, M. Magnetohydrodynamic shear flow along a flat plate with uniform suction or blowing. Journal of Applied Mathematics and Physics (ZAMP), 56(6), 1030–1047 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Bikash, S. and Sharma, H. G. MHD flow and heat transfer from continuous surface in uniform free stream of non-Newtonian fluid. Applied Mathematics and Mechanics (English Edition), 28(11), 1467–1477 (2007) DOI 10.1007/s10483-007-1106-z

    Article  MathSciNet  MATH  Google Scholar 

  38. Zueco, J. and Ahmed, S. Combined heat and mass transfer by convection MHD flow along a porous plate with chemical reaction in presence of heat source. Applied Mathematics and Mechanics (English Edition), 31(10), 1217–1230 (2010) DOI 10.1007/s10483-010-1355-6

    Article  MathSciNet  MATH  Google Scholar 

  39. Ali, F. M., Nazar, R., Arfin, N. M., and Pop, I. MHD stagnation point flow and heat transfer towards stretching sheet with induced magnetic field. Applied Mathematics and Mechanics (English Edition), 32(4), 409–418 (2011) DOI 10.1007/s10483-011-1426-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Su, X. H. and Zheng, L. C. Approximate solution to MHD Falkner-Skan flow over permeable wall. Applied Mathematics and Mechanics (English Edition), 32(4), 401–408 (2011) DOI 10.1007/s10483-011-1426-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Shit, G. C. and Haldar, R. Effect of thermal radiation on MHD viscous fluid flow and heat transfer over non linear shirking porous plate. Applied Mathematics and Mechanics (English Edition), 32(6), 677–688 (2011) DOI 10.1007/s10483-011-1448-6

    Article  MathSciNet  MATH  Google Scholar 

  42. Ashraf, M., Asghar, S., and Hossain, M. A. Thermal radiation effects on hydromagnetic mixed convection flow along a magnetized vertical porous plate. Mathematical Problems in Engineering, Article ID 686594 (2010) DOI 10.1155/2010/686594

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M., Asghar, S. & Hossain, M.A. Computational study of combined effects of conduction-radiation and hydromagnetics on natural convection flow past magnetized permeable plate. Appl. Math. Mech.-Engl. Ed. 33, 731–748 (2012). https://doi.org/10.1007/s10483-012-1583-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1583-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation