Skip to main content
Log in

Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

With the increasingly deep studies in physics and technology, the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research. In this paper, the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively investigated. With the stability criterion of linear fractional systems, the synchronization of a fractional non-autonomous system is obtained. Specifically, an effective singly active control is proposed and used to synchronize a fractional order Duffing system. The numerical results demonstrate the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Podlubny, I. Fractional Differential Equations, Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, A. A., Sarivastava, H. M., and Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier, New York (2006)

    MATH  Google Scholar 

  3. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  4. Sheu, L. J., Chen, H. K., Chen, J. H., and Tam, L. M. Chaotic dynamics of the fractionally damped Duffing equation. Chaos, Solitons and Fractals, 32(4), 1459–1468 (2007)

    Article  MATH  Google Scholar 

  5. Ge, Z. M. and Ou, C. Y. Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal. Chaos, Solitons and Fractals, 35(2), 705–717 (2008)

    Article  Google Scholar 

  6. Yu, Y. G., Li, H. X., Wang, S., and Yu, J. Z. Dyanmic analysis of a fractional-order Lorenz chaotic system. Chaos, Solitons and Fractals, 42(2), 1181–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, Z. H. and Hu, H. Y. Stability of a linear oscillator with damping force of the fractionalorder derivative. Science in China Series G: Physics, Mechanics and Astronomy, 53(2), 345–352 (2010)

    Article  Google Scholar 

  8. Xin, G. and Yu, J. B. Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos, Solitons and Fractals, 24(4), 1097–1104 (2005)

    Article  MATH  Google Scholar 

  9. Chen, J. H. and Chen, W. C. Chaotic dynamics of the fractionally damped van der Pol equation. Chaos, Solitons and Fractals, 35(1), 188–198 (2008)

    Article  Google Scholar 

  10. Ahn, C. K. Generalized passivity-based chaos synchronization. Applied Mathematics and Mechanics )English Edition), 31(8), 1009–1018 (2010) DOI 10.1007/s10483-010-1336-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Chai, Y., Lü, L., and Zhao, H. Y. Lag synchronization between discrete chaotic systems with diverse structure. Applied Mathematics and Mechanics (English Edition), 31(6), 733–738 (2010) DOI 10.1007/s10483-010-1307-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, Y. and Lü, L. Synchronization of N different coupled chaotic systems with ring and chain connections. Applied Mathematics and Mechanics (English Edition), 29(10), 1299–1308 (2008) DOI 10.1007/s10483-008-1005-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Luo, A. C. J. and Min, F. H. Synchronization dynamics of two different dynamical systems. Chaos, Solitons and Fractals, 44(6), 362–380 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, A. J. L. A theory for synchronization of dynamical systems. Communications in Nonlinear Science and Numerical Simulation, 14(5), 1901–1951 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Habib, D. and Antonio, L. Adaptive unknown-input observers-based synchronization of chaotic systems for telecommunication. IEEE Transactions on Circuits Systems, 58(4), 800–812 (2011)

    Article  Google Scholar 

  16. Olga, I. M., Alexey, A. K., and Alexander, E. H. Generalized synchronization of chaos for secure communication: remarkable stability to noise. Physics Letters A, 374(29), 2925–2931 (2010)

    Article  MATH  Google Scholar 

  17. Wang, X. Y., He, Y. J., and Wang, M. J. Chaos control of a fractional order modified coupled dynamos system. Nonlinear Analysis, 71(12), 6126–6134 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sachin, B. and Varsha, D. G. Synchronization of different fractional order chaotic systems using active control. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3536–3546 (2010)

    Article  MATH  Google Scholar 

  19. Wu, X. J. and Lu, Y. Generalized projective synchronization of the fractional-order Chen hyperchaotic system. Nonlinear Dynamics, 57(1–2), 25–35 (2009)

    Article  MATH  Google Scholar 

  20. Matouk, A. E. Chaos, feedback control and synchronization of a fractional-order modified autonomous van der Pol-Duffing circuit. Communications in Nonlinear Science and Numerical Simulation, 16(2), 975–986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Abel, A. and Schwarz, W. Chaos communications — principles, schemes, and system analysis. Proceedings of the IEEE, 90(5), 691–710 (2002)

    Article  Google Scholar 

  22. Hu, N. Q. and Wen, X. S. The application of Duffing oscillator in characteristic signal detection of early fault. Journal of Sound and Vibration, 268(5), 917–931 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nadakuditi, R. R. and Silverstein, J. W. Fundamental limit of sample generalized eigenvalue based detection of signals in noise using relatively few signal-bearing and noise-only samples. IEEE Transactions on Industrial Electronics, 4(3), 468–480 (2010)

    Google Scholar 

  24. Zhao, Z., Wang, F. L., Jia, M. X., and Wang, S. Intermittent-chaos-and-cepstrum-analysis-based early fault detection on shuttle valve of hydraulic tube tester. IEEE Transactions on Industrial Electronics, 56(7), 2764–2770 (2009)

    Article  Google Scholar 

  25. Diethelm, K. and Ford, N. J. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 265(2), 229–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, C. P. and Zhang, F. R. A survey on the stability of fractional differential equations. European Physical Journal Special Topics, 193(1), 27–47 (2011)

    Article  Google Scholar 

  27. Sabattier, J., Moze, M., and Farges, C. LMI stability conditions for fractional order system. Computers and Mathematics with Applications, 59(5), 1594–1609 (2010)

    Article  MathSciNet  Google Scholar 

  28. Thavazoei, M. S. and Haeri, M. A note on the stability of fractional order system. Mathematics and Computers in Simulation, 79(5), 1566–1576 (2009)

    Article  MathSciNet  Google Scholar 

  29. Diethelm, K. and Ford, N. J. Multi-order fractional differential equations and their numerical solution. Applied Mathematics and Computation, 154(3), 621–640 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Diethelm, K., Ford, N. J., Freed, A. D., and Luchko, Y. Algorithms for the fractional calculus: a selection of numerical method. Computer Methods in Applied Mechanics and Engineering, 194(6–8), 743–773 (2005) 583–592 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-kang Luo  (罗懋康).

Additional information

Project supported by the National Natural Science Foundation of China (No. 11171238) and the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRTO0742)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Gt., Luo, Mk. Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control. Appl. Math. Mech.-Engl. Ed. 33, 567–582 (2012). https://doi.org/10.1007/s10483-012-1571-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1571-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation