Skip to main content
Log in

Goal-oriented error estimation applied to direct solution of steady-state analysis with frequency-domain finite element method

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Based on the concept of the constitutive relation error along with the residuals of both the origin and the dual problems, a goal-oriented error estimation method with extended degrees of freedom is developed. It leads to the high quality local error bounds in the problem of the direct-solution steady-state dynamic analysis with a frequency-domain finite element, which involves the enrichments with plural variable basis functions. The solution of the steady-state dynamic procedure calculates the harmonic response directly in terms of the physical degrees of freedom in the model, which uses the mass, damping, and stiffness matrices of the system. A three-dimensional finite element example is carried out to illustrate the computational procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, R., Zhang, C., and Jiang, J. A new approach to direct solution of 2D heat transfer problem with nonlinear source-terms in frequency domain. International Journal of Nonlinear Sciences and Numerical Simulation, 7(3), 295–298 (2006)

    Article  Google Scholar 

  2. Ainsworth, M. and Tinsley-Oden, J. A Posteriori Error Estimation in Finite Element Analysis, Wiley-InterScience, New York, 1–240 (2000)

    Book  MATH  Google Scholar 

  3. Tinsley-Oden, J. and Prudhomme, S. Estimation of modeling error in computational mechanics. Journal of Computational Physics, 182, 496–515 (2002)

    Article  MathSciNet  Google Scholar 

  4. Tinsley-Oden, J., Prudhomme, S., and Bauman, P. On the extension of goal-oriented error estimation and hierarchical modeling to discrete lattice models. Comput. Methods Appl. Mech. Engrg., 194, 3668–3688 (2005)

    Article  MathSciNet  Google Scholar 

  5. Fuentes, D., Littlefield, D., Tinsley-Oden, J., and Prudhomme, S. Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomerreinforced structures. Comput. Methods Appl. Mech. Engrg., 195, 4659–4680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Prudhomme, S. and Tinsley-Oden, J. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Engrg., 176, 313–331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tinsley-Oden, J. and Prudhomme, S. Goal-oriented error estimation and adaptivity for the finite element method. Computers and Mathematics with Applications, 41, 735–756 (2001)

    Article  MathSciNet  Google Scholar 

  8. Ladeveze, P., Rougeota, P., Blanchardb, P., and Moreaub, J. P. Local error estimators for finite element linear analysis. Comput. Methods Appl. Mech. Engrg., 176, 231–246 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chamoina, L. and Ladevèze, P. Strict and practical bounds through a non-intrusive and goaloriented error estimation method for linear viscoelasticity problems. Finite Elements in Analysis and Design, 45, 251–262 (2009)

    Article  Google Scholar 

  10. Panetier, J., Ladeveze, P., and Chamoin, L. Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with XFEM. Int. J. Numer. Meth. Engng., 81, 671–700 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Gratsch, T. and Bathe, K. J. A posteriori error estimation techniques in practical finite element analysis. Computers and Structures, 83, 235–265 (2005)

    Article  MathSciNet  Google Scholar 

  12. Schleupen, A. and Ramm, E. Local and global error estimations in linear structural dynamics. Computers and Structures, 76, 741–756 (2000)

    Article  MathSciNet  Google Scholar 

  13. Larsson, F., Hansbo, P., and Runesson, K. Strategies for computing goal-oriented a posteriori error measures in non-linear elasticity. Int. J. Numer. Meth. Engng., 55, 879–894 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Van der Zee, K. G. and Verhoosel, C. V. Isogeometric analysis-based goal-oriented error estimation for free-boundary problems. Finite Elements in Analysis and Design, 47, 600–609 (2011)

    Article  MathSciNet  Google Scholar 

  15. Van der Zee, K. G., Tinsley-Oden, J., Prudhomme, S., and Hawkins-Daarud, A. Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition. Numerical Methods for Partial Differential Equations, 27(1), 160–196 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ni, Y. Q., Zheng, G., and Ko, J. M. Nonlinear periodically forced vibration of stay cables. Journal of Vibration and Acoustics, 126(2), 245–252 (2004)

    Article  Google Scholar 

  17. Challamel, N. On the comparison of Timoshenko and shear models in beam dynamics. Journal of Engineering Mechanics-ASCE, 132(10), 1141–1146 (2006)

    Article  Google Scholar 

  18. Han, S. M., Benaoya, H., and Wei, T. Dynamics of transversely vibration beams using four engineering theories. Journal of Sound and Vibration, 225(5), 935–988 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Zhuang  (庄 茁).

Additional information

Project supported by the National Natural Science Foundation of China (No. 10876100)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Zj., You, Xc. & Zhuang, Z. Goal-oriented error estimation applied to direct solution of steady-state analysis with frequency-domain finite element method. Appl. Math. Mech.-Engl. Ed. 33, 539–552 (2012). https://doi.org/10.1007/s10483-012-1569-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1569-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation