Skip to main content
Log in

Coupled thermo-hygro-mechanical damage model for concrete subjected to high temperatures

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Based on the theory of mixtures, a coupled thermo-hygro-mechanical (THM) damage model for concrete subjected to high temperatures is presented in this paper. Concrete is considered as a mixture composed of solid skeletons, liquid water, water vapor, dry air, and dissolved air. The macroscopic balance equations of the model consist of the mass conservation equations of each component and the momentum and energy conservation equations of the whole medium mixture. The state equations and the constitutive model used in the model are given. Four final governing equations are given in terms of four primary variables, i.e., the displacement components of soil skeletons, the gas pressure, the capillary pressure, and the temperature. The processes involved in the coupled model include evaporation, dehydration, heat and mass transfer, etc. Through the process of deformation failure and the energy properties, the mechanics damage evolution equations are established based on the principle of conversation of energy and the Lemaitre equivalent strain assumption. Then, the influence of thermal damage on the mechanical property is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrefler, B. A., Brunello, P., Gawin, D., Majorana, C. E., and Pesavento, F. Concrete at high temperature with application to tunnel fire. Computational Mechanics, 29(1), 43–51 (2002)

    Article  MATH  Google Scholar 

  2. Guian, S. K. Fire and life safety provisions for a long vehicular tunnel. Tunnelling and Underground Space Technology, 19(4–5), 316 (2004)

    Google Scholar 

  3. Feist, C., Aschaber, M., and Hofstetter, G. Numerical simulation of the load-carrying behavior of RC tunnel structures exposed to fire. Finite Elements in Analysis and Design, 45, 958–965 (2009)

    Article  Google Scholar 

  4. Bazant, Z. P. and Kaplan, M. F. Concrete at High Temperatures: Material Properties and Mathematical Models, Longman, Harlow (1996)

    Google Scholar 

  5. Gawin, D., Pesavento, F., and Schrefler, B. A. Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Engrg., 195, 5707–5729 (2006)

    Article  MATH  Google Scholar 

  6. Ulm, F. J., Coussy, O., and Bazant, Z. P. The “chunnel” fire, I: chemoplastic softening in rapidly heated concrete. J. Eng. Mech. ASCE, 125(3), 272–282 (1999)

    Article  Google Scholar 

  7. Kalifa, P., Menneteau, F. D., and Quenard, D. Spalling and pore pressure in HPC at high temperatures. Cement and Concrete Research, 30(12), 1915–1927 (2000)

    Article  Google Scholar 

  8. Kodur, V. K. R. and Phan, L. Critical factors governing the fire performance of high strength concrete systems. Fire Safety Journal, 42, 482–488 (2007)

    Article  Google Scholar 

  9. Baggio, P., Majorana, C. E., and Schrefler, B. A. Thermo-hygro-mechanical analysis of concrete. Int. J. Num. Meth. Fluids, 20, 573–595 (1995)

    Article  MATH  Google Scholar 

  10. Gawin, D., Majorana, C. E., and Schrefler, B. A. Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature. Mech. Cohes.-Frict. Mater., 4, 37–74 (1999)

    Article  Google Scholar 

  11. Gawin, D., Pesavento, F., and Schrefler, B. A. Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Engrg., 192, 1731–1771 (2003)

    Article  MATH  Google Scholar 

  12. Tenchev, R. and Purnell, P. An application of a damage constitutive model to concrete at high temperature and prediction of spalling. International Journal of Solids and Structures, 42, 6550–6565 (2005)

    Article  MATH  Google Scholar 

  13. Li, X. K., Li, R. T., and Schrefler, B. A. A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis. Int. J. Numer. Anal. Meth. Geomech., 30, 635–681 (2006)

    Article  MATH  Google Scholar 

  14. Bary, B., Ranc, G., Durand, S., and Carpentier, O. A coupled thermo-hydro-mechanical-damage model for concrete subjected to moderate temperatures. International Journal of Heat and Mass Transfer, 51, 2847–2862 (2008)

    Article  MATH  Google Scholar 

  15. Luzio, G. D. and Cusatis, G. Hygro-thermo-chemical modeling of high performance concrete, I: theory. Cement and Concrete Composites, 31, 301–308 (2009)

    Article  Google Scholar 

  16. Ponta, S. D., Meftahb, F., and Schrefler, B. A. Modeling concrete under severe conditions as a multiphase material. Nucl. Eng. Des., 24(3), 562–572 (2011)

    Google Scholar 

  17. Harmathy, T. Z. Effect of Moisture on the Fire Endurance of Building Materials, No. 385, ASTM, Philadelphia, 74–95 (1965)

    Book  Google Scholar 

  18. Anderberg, Y. Cracking phenomena of HPC and OC. International Workshop on Fire Performance of High-Strength-Concrete, NIST (eds. ai]Phan, L. T., Carino, N. J., Duthinh, D., and Garboczi, E.), National Institute of Standards and Technology, Gaithersburg, MD, 69–73 (1997)

    Google Scholar 

  19. Schrefler, B. A., Khoury, G. A., Gawin, D., and Majorana, C. E. Thermo-hydro-mechanical modelling of high performance concrete at high temperatures. Engineering Computations, 19(7), 787–819 (2002)

    Article  MATH  Google Scholar 

  20. Thomas, H. R. and Sansom, M. R. Fully coupled analysis of heat, moisture and air transfer in unsaturated soil. ASCE J. Eng. Mech., 121(3), 392–405 (1995)

    Article  Google Scholar 

  21. Nechnech, W., Meftah, F., and Reynouard, J. M. An elasto-plastic damage model for plain concrete subjected to high temperature. Eng. Struct., 24, 597–611 (2002)

    Article  Google Scholar 

  22. Bowen, R. M. Theory of Mixtures, Academic Press, New York (1976)

    Google Scholar 

  23. Lewis, R. W. and Schrefler, B. A. The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Wiley & Sons, Chichester (1998)

    MATH  Google Scholar 

  24. Gawin, D. and Schrefler, B. A. Thermo-hydro-mechanical analysis of partially saturated porous materials. Engrg. Comput., 13, 113–143 (1996)

    Article  MATH  Google Scholar 

  25. Gregg, S. J. and Sing, K. S. W. Adsorption, Surface Area and Porosity, Academic Press, London (1982)

    Google Scholar 

  26. ASHRAE Handbook. Fundamentals, ASHRAE, Atlanta (1993)

    Google Scholar 

  27. Gray, W. G. and Schrefler, B. A. Thermodynamic approach to effective stress in partially saturated porous media. Eur. J. Mech. A/Solids, 20, 521–538 (2001)

    Article  MATH  Google Scholar 

  28. Harmathy, T. Z. and Allen, W. L. Thermal properties of selected masonry unit concretes. ACI Journal, 70, 132–142 (1973)

    Google Scholar 

  29. Schneider, U. and Herbst, H. J. Permeabilitaet und porositaet von Beton bei hohen temperaturen (in German). Deutscher Ausschuss Stahlbeton, 403, 23–52 (1989)

    Google Scholar 

  30. Furbish, D. J. Fluid Physics in Geology: An Introduction to Fluid Motions on Earth’s Surface and Within Its Crust, Oxford University Press, Oxford (1997)

    Google Scholar 

  31. Qin, B., Chen, Z. H., Fang, Z. D., Sun, S. G., Fang, X. W., and Wang, J. Analysis of coupled thermo-hydro-mechanical behavior of unsaturated soils based on theory of mixtures I. Appl. Math. Mech. -Engl. Ed., 31(12), 1561–1576 (2010) DOI: 10.1007/s10483-010-1384-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Chen, Y. F., Zhou, C. B., and Jing, L. R. Modeling coupled THM processes of geological porous media with multiphase flow: theory and validation against laboratory and field scale experiments. Comput. Geotech., 36(8), 1308–1329 (2009)

    Article  Google Scholar 

  33. Bear, J. Dynamics of Fluids in Porous Media, Dover, New York (1988)

    MATH  Google Scholar 

  34. Mikhalyuk, A. V. and Zakharov, V. V. Dissipation of dynamic-loading energy in quasi-elastic deformation processes in rocks. Journal of Applied Mechanics and Technical Physics, 8(2), 312–318 (1996)

    Google Scholar 

  35. Stefeler, E. D., Epstein, J. S., and Conley, E. G. Energy partitioning for a crack under remote shear and compression. International Journal of Fracture, 120(4), 563–580 (2003)

    Article  Google Scholar 

  36. Xie, H. P., Ju, Y., and Li, L. Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chinese Journal of Rock Mechanics and Engineering, 24(17), 3003–3010 (2005)

    Google Scholar 

  37. Lemaitre, J. How to use damage mechanics. Nuclear Engineering and Design, 80(3), 233–245 (1984)

    Article  Google Scholar 

  38. Yang, S. Q., Xu, W. Y., and Su, C. D. Study on the deformation failure and energy properties of marble specimen under triaxial compression. Engineering Mechanics, 24(1), 136–142 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-xue Liu  (刘元雪).

Additional information

Project supported by the National Natural Science Foundation of China (No. 50979112)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Zy., Liu, Yx. Coupled thermo-hygro-mechanical damage model for concrete subjected to high temperatures. Appl. Math. Mech.-Engl. Ed. 33, 465–482 (2012). https://doi.org/10.1007/s10483-012-1564-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1564-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation