Skip to main content
Log in

Fracture analysis of mode-II crack perpendicular to imperfect bimaterial interface

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The problem of a mode-II crack close to and perpendicular to an imperfect interface of two bonded dissimilar materials is investigated. The imperfect interface is modelled by a linear spring with the vanishing thickness. The Fourier transform is used to solve the boundary-value problem and to derive a singular integral equation with the Cauchy kernel. The stress intensity factors near the left and right crack tips are evaluated by numerically solving the resulting equation. Several special cases of the mode-II crack problem with an imperfect interface are studied in detail. The effects of the interfacial imperfection on the stress intensity factors for a bimaterial system of aluminum and steel are shown graphically. The obtained observation reveals that the stress intensity factors are dependent on the interface parameters and vary between those with a fully debonded interface and those with a perfect interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cook, T. S. and Erdogan, F. Stresses in bonded materials with a crack perpendicular to interface. International Journal of Engineering Science, 10, 677–697 (1972)

    Article  MATH  Google Scholar 

  2. Rice, J. R. Elastic fracture mechanics concepts for interfacial cracks. Journal of Applied Mechanics, 55, 98–103 (1988)

    Article  Google Scholar 

  3. Li, X. F. and Fan, T. Y. The asymptotic stress field for a rigid circular inclusion at the interface of two bonded dissimilar elastic half-space materials. International Journal of Solids and Structures, 38, 8019–8035 (2001)

    Article  MATH  Google Scholar 

  4. Shin, K. C., Liu, H., Lee, J. J., and Choi, S. T. Interfacial crack tip field in anisotropic/isotropic bimaterials. Composite Structures, 66, 673–676 (2004)

    Article  Google Scholar 

  5. Zhao, M. H., Li, D. X., and Shen, Y. P. Interfacial crack analysis in three-dimensional transversely isotropic bimaterials by boundary integral equation method. Applied Mathematics and Mechanics (English Edition), 26(12), 1539–1546 (2005)

    MATH  Google Scholar 

  6. Suresh, S. and Needleman, A. Interfacial Phenonina in Composites, Elsevier Applied Science, New York (1989)

    Google Scholar 

  7. Liang, W. Y., Wang, Z. Q., and Yang, Z. J. Steady-state growing crack-tip field characteristics of mode III elastic-viscoplastic/rigid interface cracks. Applied Mathematics and Mechanics (English Edition), 31(2), 227–235 (2010) DOI 10.1007/s10483-010-0210-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, X., Pan, E., and Chung, P. W. Some basic problems in anisotropic bimaterials with a viscoelastic interface. International Journal of Solids and Structures, 46, 3725–3733 (2009)

    Article  MATH  Google Scholar 

  9. Benveniste, Y. and Miloh, T. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials, 33, 309–323 (2001)

    Article  Google Scholar 

  10. Benveniste, Y. The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mechanics of Materials, 4, 197–208 (1985)

    Article  Google Scholar 

  11. Chen, W. Q., Zhou, Y. Y., Lu, C. F., and Ding, H. J. Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding. European Journal of Mechanics A/Solids, 28, 720–727 (2009)

    Article  MATH  Google Scholar 

  12. Hashin, Z. Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids, 39, 745–762 (1991)

    Article  MathSciNet  Google Scholar 

  13. Klarbring, A. and Movchan, A. B. Asymptotic modelling of adhesive joints. Mechanics of Materials, 28, 137–145 (1998)

    Article  Google Scholar 

  14. Antipov, Y. A., Avila-Pozos, O., Kolaczkowski, S. T., and Movchan, A. B. Mathematical model of delamination cracks on imperfect interfaces. International Journal of Solids and Structures, 38, 6665–6697 (2001)

    Article  MATH  Google Scholar 

  15. Zhong, X. C., Li, X. F., and Lee, K. Y. Analysis of a mode-I crack perpendicular to an imperfect interface. International Journal of Solids and Structures, 46, 1456–1463 (2009)

    Article  Google Scholar 

  16. Bui, V. Q., Marechal, E., and Nguyen-Dang, H. Imperfect interlaminar interfaces in laminated composites: interlaminar stresses and strain-energy release rates. Composite Science and Techniques, 60, 131–143 (2000)

    Article  Google Scholar 

  17. Nairn, J. A. Numerical implementation of imperfect interfaces. Composite Material Sciences, 40, 525–536 (2007)

    Google Scholar 

  18. Sudak, L. J., Ru, C. Q., Schiavone, P., and Mioduchowski, A. A circular inclusion with inhomogeneously imperfect interface in plane elasticity. Journal of the Elasticity, 55, 19–41 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, H., Schiavone, P., Ru, C. Q., and Mioduchowski, A. An elliptic inclusion with imperfect interface in anti-plane shear. International Journal of Solids and Structures, 37, 4557–4575 (2000)

    Article  MATH  Google Scholar 

  20. Fan, H. and Wang, G. F. Screw dislocation interacting with imperfect interface. Mechanics of Materials, 35, 943–953 (2003)

    Article  Google Scholar 

  21. Wang, X., Pan, E., and Roy, A. K. New phenomena concerning a screw dislocation interacting with two imperfect interfaces. Journal of the Mechanics and Physics of Solids, 55, 2717–2734 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meguid, S. A. and Wang, X. D. Wave scattering from cracks and imperfectly bonded inhomogeneities in advanced materials. Mechanics of Materials, 31, 187–195 (1999)

    Article  Google Scholar 

  23. Lenci, S. Analysis of a crack at a weak interface. International Journal of Fracture, 108, 275–298 (2001)

    Article  Google Scholar 

  24. Ueda, S., Biwa, S., Watanabe, K. Heuer, R., and Pecorari, C. On the stiffness of spring model for closed crack. International Journal of Engineering Science, 44, 874–888 (2006)

    Article  MATH  Google Scholar 

  25. Melin, S. When does a crack grow under mode-II conditions. International Journal of Fracture, 30, 103–114 (1986)

    MathSciNet  Google Scholar 

  26. Bobet, A. The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 66, 187–219 (2000)

    Article  Google Scholar 

  27. Zhang, X. X., Cui, X. C., Yang, W. Y., and Li, J. L. Crack-tip field on mode II interface crack of double dissimilar orthotropic composite materials. Applied Mathematics and Mechanics (English Edition), 30(12), 1489–1504 (2009) DOI 10.1007/s10483-009-1202-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Ye, B. Q., Yi, X. M., Jing, S. Y., and Liang, Z. R. Analysis of interface Mechanical behavior with interface element in the composite materials. Applied Mathematics and Mechanics (English Edition), 17(4), 359–364 (1996) DOI 10.1007/BF00193799

    MATH  Google Scholar 

  29. Fan, T. Y. Foundation of Fracture Mechanics (in Chinese), Jiangsu Sci-Tech Press, Nanjing (1978)

    Google Scholar 

  30. Tada, H., Paris, P. C., and Irwin, G. R. The Stress Analysis of Cracks Handbook, Del Research Corp., Pennsylvania (1973)

    Google Scholar 

  31. Isida, M. Effect of width and length on stress intensity factors of internally cracked plates under various boundary conditions. International Journal of Fracture, 7, 301–316 (1971)

    Google Scholar 

  32. Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series, and Products, Academic Press, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-ci Zhong  (钟献词).

Additional information

Project supported by the National Natural Science Foundation of China (No. 90815001), the Natural Science Foundation of Guangxi Province of China (No. 2011GXNSFA018132), and the Scientific Research Foundation of Guangxi University (No.XBZ111497)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Xc., Zhang, Ks. Fracture analysis of mode-II crack perpendicular to imperfect bimaterial interface. Appl. Math. Mech.-Engl. Ed. 33, 357–370 (2012). https://doi.org/10.1007/s10483-012-1555-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1555-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation