Skip to main content
Log in

Three-dimensional channel flow of second grade fluid in rotating frame

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An analysis is performed for the hydromagnetic second grade fluid flow between two horizontal plates in a rotating system in the presence of a magnetic field. The lower sheet is considered to be a stretching sheet, and the upper sheet is a porous solid plate. By suitable transformations, the equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. A series of solutions to this coupled non-linear system are obtained by a powerful analytic technique, i.e., the homotopy analysis method (HAM). The results are presented with graphs. The effects of non-dimensional parameters R,λ,M 2, α, and K 2 on the velocity field are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crane, L. J. Flow past a stretching sheet. Zeitschrift für Angewandte Mathematik und Physik, 21(4), 645–647 (1970)

    Article  Google Scholar 

  2. Gupta, P. S. and Gupta, A. S. Heat and mass transfer on a stretching sheet with suction or blowing. The Canadian Journal of Chemical Engineering, 55(6), 744–746 (1977)

    Article  Google Scholar 

  3. Chen, C. K. and Char, M. I. Heat transfer of a continuous stretching surface with suction or blowing. Journal of Mathematical Analysis and Applications, 135(2), 568–580 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grubka, L. J. and Bobba, K. M. Heat transfer characteristics of a continuous stretching surface with variable tempreture. ASME Journal of Heat Transfer, 107(1), 248–250 (1985)

    Article  Google Scholar 

  5. Chiam, T. C. Magnetohydrodynamic heat transfer over a non-isothermal stretching sheet. Acta Mechanica, 122(1–4), 169–179 (1997)

    Article  MATH  Google Scholar 

  6. Chakrabarti, A. and Gupta, A. S. Hydromagnetic flow and heat transfer over a stretching sheet. Quarterly of Applied Mathematics, 37(1), 73–78 (1979)

    MATH  Google Scholar 

  7. Ali, M. E. Heat transfer characteristics of a continuous stretching surface. Warme-und Stoffubertragung, 29(4), 227–234 (1994)

    Article  Google Scholar 

  8. Dutta, B. K. Heat transfer from stretching sheet with uniform suction and blowing. Acta Mechanica, 78(3–4), 255–262 (1989)

    Article  MATH  Google Scholar 

  9. Hassanien, I. A. and Gorla, R. S. R. Heat transfer to micropolar fluid from a non-isothermal stretching sheet with suction and blowing. Acta Mechanica, 84(1–4), 191–199 (1990)

    Article  Google Scholar 

  10. Elbashbeshy, E. M. A. Heat transfer over a stretching surface with variable surface heat flux. Journal of Physics D: Applied Physics, 31(16), 1951–1954 (1998)

    Article  Google Scholar 

  11. Xu, Q. W., Bao, W. M., Mao, R. L., Yang, G. L., Pop, I., and Na, T. Y. Unsteady flow past a stretching sheet. Mechanics Research Communications, 23(4), 413–422 (1996)

    Article  Google Scholar 

  12. Mehmood, A., Ali, A., Takhar, H. S., and Shah, T. Corrigendum to: “Unsteady three-dimensional MHD boundary layer flow due to the impulsive motion of a stretching surface (Acta Mechanica, 146 (1), 59–71 (2001))”. Acta Mechanica, 199(1–4), 241–249 (2008)

    Article  MATH  Google Scholar 

  13. Mehmood, A., Ali, A., and Shah, T. Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 13(5), 902–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Devi, C. D. S., Thakhar, H. S., and Nath, G. Unsteady three-dimensional boundary layer flow due to a stretching surface. International Journal of Heat and Mass Transfer, 29(12), 1996–1999 (1986)

    Article  Google Scholar 

  15. Elbashbeshy, E. M. A. and Bazid, M. A. A. Heat transfer in a porous medium over a stretching surface with internal heat generation and suction or injection. Applied Mathematics and Computation, 158(3), 799–807 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Troy, W. C., Overman, E. A., Ermentrout, G. B., and Keener, J. P. Uniqueness of flow of a second-order fluid past a stretching sheet. Quarterly of Applied Mathematics, 44(4), 753–755 (1987)

    MathSciNet  MATH  Google Scholar 

  17. Rao, B. N. Flow of a fluid of second grade over a stretching sheet. International Journal of Non-Linear Mechanics, 31(4), 547–550 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chang, W. D., Kazarinoff, N. D., and Lu, C. A new family of explicit solutions for the similarity equations modelling flow of a non-Newtonian fluid over a stretching sheet. Archive for Rational Mechanics and Analysis, 113(2), 191–195 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pontrelli, G. Flow of a fluid of second grade over a stretching sheet. International Journal of Non-Linear Mechanics, 30(3), 287–293 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehmood, A. and Ali, A. An explicit analytic solution of steady three-dimensional stagnation point flow of second grade fluid toward a heated plate. ASME Journal of Applied Mechanics, 75(6), 061003 (2008)

    Article  Google Scholar 

  21. Ariel, P. D. A numerical algorithm for computing the stagnation point flow of a second grade fluid with/without suction. Journal of Computational and Applied Mathematics, 59(1), 9–24 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vajravelu, K. and Roper, T. Flow and heat transfer in a second grade fluid over a stretching sheet. International Journal of Non-Linear Mechanics, 34(6), 1031–1036 (1999)

    Article  Google Scholar 

  23. Baris, S. and Dokuz, M. S. Three-dimensional stagnation point flow of a second grade fluid towards a moving plate. International Journal of Engineering Science, 44(1–2), 49–58 (2006)

    Article  Google Scholar 

  24. Ferrario, C., Passerini, A., and Thater, G. Generalization of the Lorenz model to the twodimensional convection of second grade fluid. International Journal of Non-Linear Mechanics, 39(4), 581–591 (2004)

    Article  MATH  Google Scholar 

  25. Xu, H. and Liao, S. J. Series solutions of unsteady magnetohydrodynamics flows of non-Newtonian fluids caused by an impulsively stretching plate. Journal of Non-Newtonian Fluid Mechanics, 129(1), 46–55 (2005)

    Article  MATH  Google Scholar 

  26. Huilgol, R. R. and Keller, H. B. Flow of viscoelastic fluids between rotating disks: part I. Journal of Non-Newtonian Fluid Mechanics, 18(1), 101–110 (1985)

    Article  MATH  Google Scholar 

  27. Huilgol, R. R. and Rajagopal, K. R. Non-axisymmetric flow of a viscoelastic fluid between rotating disks. Journal of Non-Newtonian Fluid Mechanics, 23, 423–434 (1987)

    Article  MATH  Google Scholar 

  28. Vajravelu, K. Analytical and numerical solutions of a coupled non-linear system arising in a threedimensional rotating flow. International Journal of Non-Linear Mechanics, 39(1), 13–24 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao, S. J. Beyond Perturbation: Introduction to the Homotopy Analysis Methods, Chapman & Hall/CRC Press, Boca Raton (2003)

    Google Scholar 

  30. Hilton, P. H. An Introduction to Homotopy Theory, Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  31. Sen, S. Topology and Geometry for Physicists, Academic Press, Florida (1983)

    MATH  Google Scholar 

  32. Yang, C. and Liao, S. J. On the explicit, purely analytic solution of von Karman swirling viscous flow. Communcations in Non-Linear Science and Numerical Simulation, 11(1), 83–93 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abbasbandy, S. Homotopy analysis method for heat radiation equations. International Communications in Heat and Mass Transfer, 34(3), 380–387 (2007)

    Article  MathSciNet  Google Scholar 

  34. Ziabaksh, Z. and Domairy, G. Solution of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field by using the homotopy analysis method. Communcations in Non-Linear Science and Numerical Simulation, 14(4), 1284–1294 (2009)

    Article  Google Scholar 

  35. Liao, S. J. A uniformly valid analytic solution of 2D viscous flow past a semi infinite flat plate. Journal of Fluid Mechanics, 385, 101–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liao, S. J. and Cheung, K. F. Homotopy analysis of non-linear progressive waves in deep water. Journal of Engineering Mathematics, 45(2), 105–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, H. and Liao, S. J. An explicit analytic solution for convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream. International Journal of Engineering Science, 43(10), 859–874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liao, S. J. On the analytic solution of magnetohydrodynamic flow of non-Newtonian fluids over a stretching sheet. Journal of Fluid Mechanics, 488, 189–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mehmood, A. and Ali, A. Analytic solution of generalized three-dimensional flow and heat transfer over a stretching plane wall. International Communications in Heat and Mass Transfer, 33(10), 1243–1252 (2006)

    Article  Google Scholar 

  40. Mehmood, A. and Ali, A. Analytic solution of three-dimensional viscous flow and heat transfer over a stretching flat surface by homotopy analysis method. ASME Journal of Heat Transfer, 130(12), 121701 (2008)

    Article  Google Scholar 

  41. Liao, S. J. On the homotopy analysis method for non-linear problems. Applied Mathematics and Computation, 147(2), 499–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liao, S. J. An approximate solution technique which does not depend upon small parameters, part 2: an application in fluid mechanics. International Journal of Non-Linear Mechanics, 32(5), 815–822 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shercliff, J. A. A Textbook of Magnetohydrodynamics, Pergamon Press, Oxford (1965)

    Google Scholar 

  44. Rivlin, R. S. and Ericksen, J. L. Stress deformation relations for isotropic materials. Journal of Rational Mechanics and Analysis, 4(5), 681–702 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hussnain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussnain, S., Mehmood, A. & Ali, A. Three-dimensional channel flow of second grade fluid in rotating frame. Appl. Math. Mech.-Engl. Ed. 33, 289–302 (2012). https://doi.org/10.1007/s10483-012-1550-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1550-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation