Skip to main content
Log in

Numerical investigation of Dufour and Soret effects on unsteady MHD natural convection flow past vertical plate embedded in non-Darcy porous medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The Dufour and Soret effects on the unsteady two-dimensional magnetohydrodynamics (MHD) double-diffusive free convective flow of an electrically conducting fluid past a vertical plate embedded in a non-Darcy porous medium are investigated numerically. The governing non-linear dimensionless equations are solved by an implicit finite difference scheme of the Crank-Nicolson type with a tridiagonal matrix manipulation. The effects of various parameters entering into the problem on the unsteady dimensionless velocity, temperature, and concentration profiles are studied in detail. Furthermore, the time variation of the skin friction coefficient, the Nusselt number, and the Sherwood number is presented and analyzed. The results show that the unsteady velocity, temperature, and concentration profiles are substantially influenced by the Dufour and Soret effects. When the Dufour number increases or the Soret number decreases, both the skin friction and the Sherwood number decrease, while the Nusselt number increases. It is found that, when the magnetic parameter increases, the velocity and the temperature decrease in the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B 0 :

magnetic induction

C :

concentration

c p :

specific heat at constant pressure

c s :

concentration susceptibility

Da :

Darcy number

D m :

coefficient of mass diffusivity

Du :

Dufour number

F :

Forchheimer coefficient

g :

gravitational acceleration

Gr c :

modified solutal Grashof number

Gr t :

thermal Grashof number

k e :

effective thermal conductivity of porous medium

K p :

permeability of porous medium

K t :

thermal diffusion ratio

M :

magnetic field parameter

Nu :

Nusselt number

Pr :

Prandtl number

Sc :

Schmidt number

Sh :

Sherwood number

Sr :

Soret number

T :

temperature

t :

time

T :

free stream temperature

T m :

mean fluid temperature

T w :

wall temperature

U,V :

dimensionless velocity components in X- and Y-directions, respectively

u,v :

velocity components in x- and y- directions, respectively

u 0 :

velocity of plate

X :

dimensionless spatial coordinate along plate

Y :

dimensionless spatial coordinate normal to plate

x :

spatial coordinate along plate

y :

spatial coordinate normal to plate

α e :

effective thermal diffusivity

Γ:

Forchheimer parameter

ρ :

fluid density

φ :

dimensionless concentration variable

θ :

dimensionless temperature variable

τ :

dimensionless time

ν :

effective kinematic viscosity of fluid

σ :

electrical conductivity of fluid

β c :

concentration expansion coefficient

β t :

thermal expansion coefficient

w:

conditions at wall

∞:

free stream conditions

References

  1. Nield, D. A. and Bejan, A. Convection in Porous Media, 3rd ed., Springer, New York (2006)

    Google Scholar 

  2. Ingham, D. and Pop, I. Transport Phenomena in Porous Media III, Elsevier, Oxford (2005)

    Google Scholar 

  3. Eckert, E. R. G. and Drak, R. M. Analysis of Heat and Mass Transfer, McGraw-Hill, New York (1972)

    MATH  Google Scholar 

  4. Kafoussias, N. G. and Williams, E. W. Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity. International Journal of Engineering Science, 33(9), 1369–1384 (1995)

    Article  MATH  Google Scholar 

  5. Anghel, M., Takhar, H. S., and Pop, I. Dufour and Soret effects on free convection boundary layer over a vertical surface embedded in a porous medium. Studia Universitatis Babes-Bolyai, Mathematica, 45, 11–21 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Postelnicu, A. Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects. International Journal of Heat and Mass Transfer, 47(6–7), 1467–1472 (2004)

    Article  MATH  Google Scholar 

  7. Lakshmi-Narayana, P. A. and Murthy, P. V. S. N. Soret and Dufour effects on free convection heat and mass transfer from a horizontal flat plate in a Darcy porous medium. Journal of Heat Transfer, 130(10), 104504 (2008)

    Article  Google Scholar 

  8. Mohamad, R. A. Double-diffusive convection-radiation interaction on unsteady MHD flow over a vertical moving porous plate with heat generation and Soret effect. Applied Mathematical Sciences, 3(13), 629–651 (2009)

    MathSciNet  Google Scholar 

  9. Afify, A. A. Similarity solution in MHD: effects of thermal-diffusion and diffusion-thermo on free convective heat and mass transfer over a stretching surface considering suction or injection. Communications in Nonlinear Science and Numerical Simulation, 14(5), 2202–2214 (2009)

    Article  MATH  Google Scholar 

  10. Vempati, S. R. and Laxmi-Narayana-Gari, A. B. Soret and Dufour effects on unsteady MHD flow past an infinite vertical porous plate with thermal radiation. Applied Mathematics and Mechanics (English Edition), 31(12), 1481–1496 (2010) DOI 10.1007/s10483-010-1378-9

    Article  MATH  MathSciNet  Google Scholar 

  11. Shyam, S. T., Rajeev, M., Rohit, K. G., and Aiyub, K. MHD free convection-radiation interaction along a vertical surface embedded in Darcian porous medium in presence of Soret and Dufour’s effects. Thermal Science, 14(1), 137–145 (2010)

    Article  Google Scholar 

  12. Eugen, M. and Adrian, P. Double-diffusive natural convection flows with thermosolutal symmetry in porous media in the presence of the Soret-Dufour effects. Transport in Porous Media, 88(1), 149–167 (2011)

    Article  Google Scholar 

  13. Cheng, C. Y. Soret and Dufour effects on natural convection boundary layer flow over a vertical cone in a porous medium with constant wall heat and mass fluxes. International Communications in Heat and Mass Transfer, 38(1), 44–48 (2011)

    Article  Google Scholar 

  14. Kinyanjui, M., Wanza, J. K. K., and Uppal, S. M. Magnetohydrodynamic free convection heat and mass transfer of a heat generating fluid past an impulsively started infinite vertical porous plate with Hall current and radiation absorption. Energy Conversion and Management, 42(2), 917–931 (2001)

    Article  Google Scholar 

  15. Al-Odat, M. Q. and Al-Azab, T. A. Influence of chemical reaction on transient MHD free convection over a moving vertical plate. Emirates Journal for Engineering Research, 12(3), 15–21 (2007)

    Google Scholar 

  16. Palani, G. and Srikanth, U. MHD flow past a semi-infinite vertical plate with mass transfer. Nonlinear Analysis: Modelling and Control, 14(3), 345–356 (2009)

    Google Scholar 

  17. Orhan, A. and Ahmet, K. MHD mixed convection of a viscous dissipating fluid about a permeable vertical flat plate. Applied Mathematical Modelling, 33(11), 4086–4096 (2009)

    Article  MATH  Google Scholar 

  18. Dulal, P. and Hiranmoy, M. The influence of thermal radiation on hydromagnetic Darcy-Forchheimer mixed convection flow past a stretching sheet embedded in a porous medium. Meccanica, 44(4), 739–753 (2011)

    Google Scholar 

  19. Makinde, O. D. On MHD heat and mass transfer over a moving vertical plate with a convective surface boundary condition. The Canadian Journal of Chemical Engineering, 88(6), 983–990 (2010)

    Article  Google Scholar 

  20. Ali-Chamkha, M. A. and Mansour, A. A. Unsteady MHD free convective heat and mass transfer from a vertical porous plate with Hall current, thermal radiation and chemical reaction effects. International Journal for Numerical Methods in Fluids, 65(4), 432–447 (2011)

    Article  MathSciNet  Google Scholar 

  21. Ramana-Murthy, C. V. and Hari, P. P. Flow past a semi infinite moving vertical plate with viscous dissipation under the influence of magnetic field. Advances in Theoretical and Applied Mathematics, 6(1), 73–87 (2011)

    Google Scholar 

  22. Murthy, P. V. S. N. and Singh, P. Heat and mass transfer by natural convection in a non-Darcy porous medium. Acta Mechanica, 138, 243–254 (1999)

    Article  MATH  Google Scholar 

  23. Jumah-Rami, Y., Fawzi, A., and Abu-Al-Rub, F. Darcy-Forchheimer mixed convection heat and mass transfer in fluid saturated porous media. International Journal of Numerical Methods for Heat and Fluid Flow, 11(6), 600–618 (2001)

    Article  MATH  Google Scholar 

  24. Mohamed, F. E. and Gorla, R. S. R. Non-Darcy, free convective heat transfer from a plate in a porous medium. International Journal of Fluid Mechanics Research, 32(1), 21–38 (2005)

    Article  Google Scholar 

  25. Dulal, P. and Mondal, H. Effect of variable viscosity on MHD non-Darcy mixed convective heat transfer over a stretching sheet embedded in a porous medium with non-uniform heat source/sink. Communications in Nonliear Science and Numerical Simulation, 50(6), 1553–1565 (2010)

    Google Scholar 

  26. Ahmed, N. K. and Barua, H. D. P. Unsteady MHD free convective flow past a vertical porous plate immersed in a porous medium with Hall current, thermal diffusion and heat source. International Journal of Engineering, Science and Technology, 2(6), 59–74 (2010)

    Google Scholar 

  27. Partha, M. K. Nonlinear convection in a non-Darcy porous medium. Applied Mathematics and Mechanics (English Edition), 31(5), 565–574 (2010) DOI 10.1007/s10483-010-0504-6

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Q. Al-Odat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Odat, M.Q., Al-Ghamdi, A. Numerical investigation of Dufour and Soret effects on unsteady MHD natural convection flow past vertical plate embedded in non-Darcy porous medium. Appl. Math. Mech.-Engl. Ed. 33, 195–210 (2012). https://doi.org/10.1007/s10483-012-1543-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1543-9

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation