Skip to main content
Log in

MHD flow and heat transfer of micropolar fluid between two porous disks

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through von Karman’s similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Elcrat, A. R. On the radial flow of a viscous fluid between porous disks. Archive for Rational Mechanics and Analysis, 61(1), 91–96 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rasmussen, H. Steady viscous flow between two porous disks. Zeitschrift für Angewandte Mathematik und Physik, 21(2), 187–195 (1970)

    Article  MathSciNet  Google Scholar 

  3. Guar, Y. N. and Chaudhary, R. C. Heat transfer for laminar flow through parallel porous disks of different permeability. Proceedings Mathematical Sciences, 87(9), 209–217 (1978)

    Article  Google Scholar 

  4. Rudraiah, N. and Chandrasekhara, B. C. Flow of a conducting fluid between porous disks for large suction Reynolds number. Journal of the Physical Society of Japan, 27, 1041–1045 (1969)

    Article  Google Scholar 

  5. Phan-Thien, N. and Bush, M. B. On the steady flow of a Newtonian fluid between two parallel disks. Zeitschrift für Angewandte Mathematik und Physik, 35(6), 912–919 (1984)

    Article  Google Scholar 

  6. Attia, H. A. On the effectiveness of the ion slip on the steady flow of a conducting fluid due to a porous rotating disk with heat transfer. Tamkang Journal of Science and Engineering, 9(3), 185–193 (2006)

    MathSciNet  Google Scholar 

  7. Fang, T. Flow over a stretchable disk. Physics of Fluids, 19(2), 128105 (2007)

    Article  Google Scholar 

  8. Ibrahim, F. N. Unsteady flow between two rotating disks with heat transfer. Journal of Physics D: Applied Physics, 24(8), 1293–1299 (1991)

    Article  Google Scholar 

  9. Frusteri, F. and Osalausi, E. On MHD and slip flow over a rotating porous disk with variable properties. International Communications in Heat and Mass Transfer, 34(4), 492–501 (2007)

    Article  Google Scholar 

  10. Ersoy, H. V. An approximate solution for flow between two disks rotating about distinct axes at different speeds. Mathematical Problems in Engineering, 2007, 1–16 (2007)

    Article  MathSciNet  Google Scholar 

  11. Eringen, A. C. Simple microfluids. International Journal of Engineering Science, 2(2), 205–217 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  12. Eringen, A. C. Theory of micropolar fluids. Journal of Applied Mathematics and Mechanics, 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  13. Ariman, T., Turk, M. A., and Sylvester, N. D. Microrotation fluid mechanics — a review. International Journal of Engineering Science, 11, 905–930 (1973)

    Article  MATH  Google Scholar 

  14. Guram, G. S. and Anwar, M. Steady flow of a micropolar fluid due to a rotating disk. Journal of Engineering Mathematics, 13(3), 223–234 (1979)

    Article  MATH  Google Scholar 

  15. Guram, G. S. and Anwar, M. Micropolar flow due to a rotating disk with suction and injection. Zeitschrift für Angewandte Mathematik und Mechanik, 61(11), 589–605 (1981)

    Article  MATH  Google Scholar 

  16. Takhar, H. S., Bhargava, R., Agrawal, R. S., and Balaji, A. V. S. Finite element solution of micropolar fluid flow and heat transfer between two porous disks. International Journal of Engineering Science, 38(17), 1907–1922 (2000)

    Article  MATH  Google Scholar 

  17. Wang, X. L. and Zhu, K. Q. Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects. Tribology International, 39(3), 227–237 (2006)

    Article  Google Scholar 

  18. Sacheti, N. C. and Bhatt, B. S. Steady laminar flow of a non-Newtonian fluid with suction or injection and heat transfer through porous parallel disks. Zeitschrift für Angewandte Mathematik und Mechanik, 56(1), 43–50 (2006)

    Google Scholar 

  19. Anwar-Kamal, M., Ashraf, M., and Syed, K. S. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks. Applied Mathematics and Computation, 179(1), 1–10 (2006)

    Article  MathSciNet  Google Scholar 

  20. Ashraf, M., Anwar-Kamal, M., and Syed, K. S. Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk. Applied Mathematical Modelling, 33(4), 1933–1943 (2009)

    Article  MATH  Google Scholar 

  21. Ashraf, M., Anwar-Kamal, M., and Syed, K. S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel. Computers and Fluids, 38(10), 1895–1902 (2009)

    Article  Google Scholar 

  22. Shercliff, J. A. A Text Book of Magnetohydrodynamics, Pergamon Press, Oxford (1965)

    Google Scholar 

  23. Rossow, V. J. On Flow of Electrically Conducting Fluids Over a Flat Plate in the Presence of a Transverse Magnetic Field, Report-1358, National Advisory Committee for Aeronautics, California (1958)

    Google Scholar 

  24. Von Karman, M. Under laminare and turbulente Reibung. Zeitschrift für Angewandte Mathematik und Mechanik, 1(4), 233–235 (1921)

    Article  MATH  Google Scholar 

  25. Elkouh, A. F. Laminar flow between porous disks. Journal of the Engineering Mechanics Division, 93(4), 31–38 (1967)

    Google Scholar 

  26. Gerald, C. F. Applied Numerical Analysis, Addison-Wesley Publishing Company, Massachusetts (1974)

    Google Scholar 

  27. Milne, W. E. Numerical Solutions of Differential Equations, John Willey and Sons Inc., New York (1953)

    Google Scholar 

  28. Syed, K. S., Tupholme, G. E., and Wood, A. S. Iterative solution of fluid flow in finned tubes. Proceedings of the 10th International Conference on Numerical Methods in Laminar and Turbulent Flow (eds. Taylor, C. and Cross, J. T.), Pineridge Press, Swansea, 429–440 (1997)

    Google Scholar 

  29. Deuflhard, P. Order and step size control in extrapolation methods. Numerische Mathematik, 41(3), 399–422 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Chang, L. C. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and buoyancy effects. Journal of Physics D: Applied Physics, 39(6), 1132–1140 (2006)

    Article  Google Scholar 

  31. Lok, Y. Y., Pop, I., and Chamkha, A. J. Nonorthogonal stagnation-point flow of a micropolar fluid. International Journal of Engineering Science, 45(1), 173–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ashraf, M. and Ashraf, M. M. MHD stagnation point flow of a micropolar fluid towards a heated surface. Applied Mathematics and Mechanics (English Edition), 32(1), 45–54 (2011) DOI 10.1007/s10483-011-1392-7

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M., Wehgal, A.R. MHD flow and heat transfer of micropolar fluid between two porous disks. Appl. Math. Mech.-Engl. Ed. 33, 51–64 (2012). https://doi.org/10.1007/s10483-012-1533-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-012-1533-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation