Advertisement

Applied Mathematics and Mechanics

, Volume 32, Issue 12, pp 1587–1598 | Cite as

Stokes flow of micro-polar fluids by peristaltic pumping through tube with slip boundary condition

  • D. TripathiEmail author
  • M. K. Chaube
  • P. K. Gupta
Article

Abstract

This paper studies the Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of the slip boundary condition. The motion of the wall is governed by the sinusoidal wave equation. The analytical and numerical solutions for the axial velocity, the micro-polar vector, the stream function, the pressure gradient, the friction force, and the mechanical efficiency are obtained by using the lubrication theory under the low Reynolds number and long wavelength approximations. The impacts of the emerging parameters, such as the coupling number, the micro-polar parameter, the slip parameter on pumping characteristics, the friction force, the velocity profile, the mechanical efficiency, and the trapping phenomenon are depicted graphically. The numerical results infer that large pressure is required for peristaltic pumping when the coupling number is large, while opposite behaviors are found for the micro-polar parameter and the slip parameter. The size of the trapped bolus reduces with the increase in the coupling number and the micro-polar parameter, whereas it blows up with the increase in the slip parameter.

Key words

Stokes flow slip boundary condition mechanical efficiency micro-polar fluid peristaltic pumping trapping 

Chinese Library Classification

O357.4 

2010 Mathematics Subject Classification

76D08 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Eringen, C. Theory of micropolar fluids. Journal of Mathematics and Mechanics, 16, 1–16 (1966)MathSciNetGoogle Scholar
  2. [2]
    Devi, R. G. and Devanathan, R. Peristaltic motion of a micropolar fluid. Proceedings of the Indian Academy of Sciences, 81, 149–163 (1975)zbMATHGoogle Scholar
  3. [3]
    Srinivasacharya, D., Mishra, M., and Rao, A. R. Peristaltic pumping of a micropolar fluid in a tube. Acta Mechanica, 161, 165–178 (2003)zbMATHGoogle Scholar
  4. [4]
    Muthu, P., Kumar, B. V. R., and Chandra, P. Peristaltic motion of micropolar fluid in circular cylindrical tubes: effect of wall properties. Applied Mathematical Modeling, 32, 2019–2033 (2008)CrossRefzbMATHGoogle Scholar
  5. [5]
    Hayat, T. and Ali, N. Effects of an endoscope on peristaltic flow of a micropolar fluid. Mathematical and Computer Modelling, 48, 721–733 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Hayat, T., Ali, N., and Abbas, Z. Peristaltic flow of micropolar fluid in a channel with different wave forms. Physics Letters A, 370, 331–344 (2007)CrossRefGoogle Scholar
  7. [7]
    Muthu, P., Kumar, B. V. R., and Chandra, P. On the influence of wall properties in the peristaltic motion of micropolar fluid. ANZIAM Journal, 45, 245–260 (2003)CrossRefzbMATHGoogle Scholar
  8. [8]
    Ali, N. and Hayat, T. Peristaltic flow of a micropolar fluid in an asymmetric channel. Computers and Mathematics with Applications, 55, 589–608 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Mekheimer, K. S. and Elmaboud, Y. A. The influence of a micropolar fluid on peristaltic transport in an annulus: application of the clot mode. Applied Bionics and Biomechanics, 5, 13–23 (2008)CrossRefGoogle Scholar
  10. [10]
    Pandey, S. K. and Tripathi, D. A mathematical model for peristaltic transport of micro-polar fluids. Applied Bionics and Biomechanics, 8, 279–293 (2011)Google Scholar
  11. [11]
    Pandey, S. K. and Chaube, M. K. Peristaltic flow of a micropolar fluid through a porous medium in the presence of an external magnetic field. Communications in Nonlinear Science and Numerical Simulations, 16, 3591–3601 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Kwang, W., Chu, H., and Fang, J. Peristaltic transport in a slip flow. European Physical Journal B, 16, 543–547 (2000)CrossRefGoogle Scholar
  13. [13]
    Hakeem, A. E., Naby, A. E., and Shamy, I. I. E. Slip effects on peristaltic transport of power-law fluid through an inclined tube. Applied Mathematical Sciences, 60, 2967–2980 (2007)Google Scholar
  14. [14]
    Ali, N., Hussain, Q., Hayat, T., and Asghar, S. Slip effects on the peristaltic transport of MHD fluid with variable viscosity. Physics Letters A, 372, 1477–1489 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    Hayat, T., Qureshi, M. U., and Ali, N. The influence of slip on the peristaltic motion of a third order fluid in an asymmetric channel. Physics Letters A, 372, 2653–2664 (2008)CrossRefzbMATHGoogle Scholar
  16. [16]
    Tripathi, D., Gupta, P. K., and Das, S. Influence of slip condition on peristaltic transport of a viscoelastic fluid with fractional Burgers’ model. Thermal Science, 15(2), 501–515 (2011)CrossRefGoogle Scholar
  17. [17]
    Pandey, S. K. and Tripathi, D. Influence of magnetic field on the peristaltic flow of a viscous fluid through a finite-length cylindrical tube. Applied Bionics and Biomechanics, 7, 169–176 (2010)CrossRefGoogle Scholar
  18. [18]
    Pandey, S. K. and Tripathi, D. Peristaltic flow characteristics of Maxwell and magnetohydrodynamic fluids in finite channels. Journal of Biological Systems, 18, 621–647 (2010)CrossRefMathSciNetGoogle Scholar
  19. [19]
    Pandey, S. K. and Tripathi, D. Unsteady model of transportation of Jeffrey fluid by peristalsis. International Journal of Biomathematics, 3, 453–472 (2010)CrossRefMathSciNetGoogle Scholar
  20. [20]
    Pandey, S. K. and Tripathi, D. Peristaltic transport of a casson fluid in a finite channel: application to flows of concentrated fluids in oesophagus. International Journal of Biomathematics, 3, 473–491 (2010)CrossRefMathSciNetGoogle Scholar
  21. [21]
    Tripathi, D., Pandey, S. K., and Das, S. Peristaltic transport of a generalized Burgers’ fluid: application to movement of chyme in small intestine. Acta Astronautica, 69, 30–38 (2011)CrossRefGoogle Scholar
  22. [22]
    Tripathi, D. Numerical and analytical simulation of peristaltic flows of generalized Oldroyd-B fluids. International Journal for Numerical Methods in Fluids, DOI 10.1002/fld.2466Google Scholar
  23. [23]
    Tripathi, D. Peristaltic transport of a viscoelastic fluid in a channel. Acta Astronautica, 68, 1379–1385 (2011)CrossRefGoogle Scholar
  24. [24]
    Tripathi, D. Numerical study on peristaltic flow of generalized Burgers’ fluids in uniform tubes in presence of an endoscope. International Journal for Numerical Methods in Biomedical Engineering, 27(11), 1812–1828 (2011)CrossRefMathSciNetGoogle Scholar
  25. [25]
    Tripathi, D. Peristaltic transport of fractional Maxwell fluids in uniform tubes: application of an endoscope. Computers and Mathematics with Applications, 62(3), 1116–1126 (2011)CrossRefGoogle Scholar
  26. [26]
    Tripathi, D. Numerical study on peristaltic transport of fractional bio-fluids. Journal of Mechanics in Medicine and Biology, DOI 10.1142/S0219519411004290Google Scholar
  27. [27]
    Tripathi, D., Pandey, S. K., and Das, S. Peristaltic flow of viscoelastic fluid with fractional Maxwell model through a channel. Applied Mathematics and Computation, 215, 3645–3654 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    Pandey, S. K. and Chaube, M. K. Peristaltic transport of a visco-elastic fluid in a tube of nonuniform cross section. Mathematical and Computer Modelling, 52, 501–514 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Pandey, S. K. and Chaube, M. K. Study of wall properties on peristaltic transport of a couple stress fluid. Meccanica, DOI 10.1007/s11012-010-9387-8Google Scholar
  30. [30]
    Shapiro, A. H., Jafferin, M. Y., and Weinberg, S. L. Peristaltic pumping with long wavelengths at low Reynolds number. Journal of Fluid Mechanics, 37, 799–825 (1969)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology RoparPunjabIndia
  2. 2.Department of MathematicsRaj Kumar Goel Institute of TechnologyGhaziabadIndia
  3. 3.Department of Applied Mathematics, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations