Applied Mathematics and Mechanics

, Volume 32, Issue 12, pp 1541–1564 | Cite as

Laguerre-Gauss collocation method for initial value problems of second order ODEs

  • Jian-ping Yan (严建平)
  • Ben-yu Guo (郭本瑜)Email author


This paper proposes a new collocation method for initial value problems of second order ODEs based on the Laguerre-Gauss interpolation. It provides the global numerical solutions and possesses the spectral accuracy. Numerical results demonstrate its high efficiency.

Key words

Laguerre-Gauss collocation method initial value problem second order ODEs 

Chinese Library Classification


2010 Mathematics Subject Classification

65L60 41A10 41A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Coleman, J. P. and Duxbury, S. C. Mixed collocation methods for y″ = f(x, y). J. Comp. Appl. Math., 126, 47–75 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    Gautschi, W. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math., 3, 381–397 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    Lambert, J. D. and Watson, I. A. Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl., 18, 189–202 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    Simos, T. E. Exponentially-fitted Runge-Kutta-Nyström method for the numerical solution of initial value problems with oscillating solution. Appl. Math. Lett., 15, 217–225 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    Cash, J. R. High order P-stable formulae for the numerical integration of periodic initial value problems. Numer. Math., 37, 355–370 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    Chawla, M. M. and Rao, P. S. High-accuracy P-stable methods for y″ = f(t, y). IMA J. Numer. Anal., 5, 215–220 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    Van Daele, M., De Hecke, H., De Meyer, H., and Rerghe, G. V. On a class of P-stable mono-implict Runge-Kutta-Nyström methods. Appl. Numer. Math., 27, 69–82 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. [8]
    Franco, J. M. and Palacios, M. High order P-stable multistep methods. J. Comp. Appl. Math., 30, 1–10 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    Hairer, E. Unconditionally stable methods for second order differential equations. Numer. Math., 32, 373–379 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  10. [10]
    Pagageorigiou, G., Famelis, T., and Tsitouras, C. A P-stable singly diagonally implicit Runge-Kutta-Nyström method. Numer. Algo., 17, 345–353 (1998)CrossRefGoogle Scholar
  11. [11]
    Dormand, J. R., El-Mikkawy, M. E. A., and Prince, P. J. High-order embedded Rung-Kutta-Nyström formulae. IMA J. Numer. Anal., 7, 423–430 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    Franco, J. M., Gomez, I., and Rander, L. Four-stage symplectic and P-stable SDIRKN methods with dispersion of high order. Numer. Algor., 26, 347–363 (2001)CrossRefzbMATHGoogle Scholar
  13. [13]
    Hairer, E. and Wanner, G. A theory for Nyström methods. Numer. Math., 25, 383–400 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  14. [14]
    Van der Houwen, P. J. and Sommeijer, B. P. Diagonally implicit Runge-Kutta(-Nyström) methods with reduced phase-errors for computing oscillating solutions. SIAM J. Numer. Anal., 26, 414–429 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  15. [15]
    De Meyer, H., Van Hecke, M., and Van Berghe, G. On the generation of mono-inplicit Runge-Kutta-Nyström methods by mono-implicit Runge-Kutta methods. J. Comp. Appl. Math., 87, 147–167 (1997)CrossRefzbMATHGoogle Scholar
  16. [16]
    Vigo-Aguiar, J. and Ramos, H. Variable stepsize implementation of multistep methods for y″ = f(x, y, y′). J. Comp. Appl. Math., 192, 114–131 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    Van der Houwen, P. J., Sommeijer, B. P., and Cong, N. H. Stability of collocation-based Runge-Kutta-Nyström methods. BIT, 31, 469–481 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  18. [18]
    Kramarz, L. Stability of collocation methods for the numerical solution of y″ = f(x, y). BIT, 20, 215–222 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    Guo, B. Y. and Wang, Z. Q. Legendre-Gauss collocation methods for ordinary differential equations. Adv. Comp. Math., 30, 249–280 (2009)CrossRefzbMATHGoogle Scholar
  20. [20]
    Guo, B. Y. and Wang, Z. Q. Numerical integration based on Laguerre-Gauss interpolation. Comput. Meth. Appl. Mech. Engrg., 196, 3726–3741 (2007)CrossRefzbMATHGoogle Scholar
  21. [21]
    Guo, B. Y. and Wang, Z. Q. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Disc. Conti. Dyna. Syst. B, 14, 1029–1054 (2010)CrossRefzbMATHGoogle Scholar
  22. [22]
    Guo, B. Y., Wang, Z. Q., Tian, H. J., and Wang, L. L. Integration processes of ordinary differential equations based on Laguerre-Gauss interpolations. Math. Comp., 77, 181–199 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. [23]
    Guo, B. Y. and Yan, J. P. Legendre-Gauss collocation methods for initial value problems of second order ordinary differential equations. Appl. Numer. Math., 59, 1386–1408 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    Guo, B. Y. and Zhang, X. Y. A new generalized Laguerre approximation and its applications. J. Comp. Appl. Math., 181, 342–363 (2005)CrossRefzbMATHGoogle Scholar
  25. [25]
    Guo, B. Y., Wang, L. L., and Wang, Z. Q. Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal., 43, 2567–2589 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Fehlberg, E. Classical Eight and Lower-Order Runge-Kutta-Nyström Formulae with Stepsize Control for Special Second Order Differential Equations, NASA Technical Report, NASA TR R-381, Washington, D. C. (1972)Google Scholar
  27. [27]
    Simos, T. E. and Vigo-Aguiar, J. A new modified Runge-Kutta-Nyström method with phase-lag of order infinity for the numerial solution of the Schrödinger equation and related problems. Inter. J. Modern Phys. C, 11, 1195–1208 (2000)CrossRefzbMATHGoogle Scholar
  28. [28]
    Franco, J. M. Runge-Kutta-Nyström method adapted to the numerical integration of perturbed oscillators. Comp. Phys. Comm., 147, 770–787 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    Simos, T. E. and Vigo-Aguiar, J. On the construction of efficient methods for second order IVPs with oscillating solution. Inter. J. Modern Phys. C, 12, 1453–1476 (2001)CrossRefMathSciNetGoogle Scholar
  30. [30]
    Franco, J. M., González, L. A. B., and Martín, P. An algorithm for the systematic construction of solutions to perturbed problems. Comp. Phys. Comm., 111, 110–132 (1998)CrossRefGoogle Scholar
  31. [31]
    Guo, B. Y. and Yan, J. P. A collocation method for initial value problems of second-order ODEs by using Laguerre functions. Numer. Math. Theor. Meth. Appl., 4, 282–294 (2011)Google Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jian-ping Yan (严建平)
    • 1
    • 2
  • Ben-yu Guo (郭本瑜)
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of MathematicsShanghai Normal UniversityShanghaiP. R. China
  2. 2.Department of Applied MathematicsGuangdong University of FinanceGuangzhouP. R. China
  3. 3.Scientific Computing Key Laboratory of Shanghai UniversitiesShanghaiP. R. China
  4. 4.Division of Computational Science of E-institute of Shanghai UniversitiesShanghaiP. R. China

Personalised recommendations