Skip to main content
Log in

Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfürth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, T. X. and Feng, M. F. A least squares Galerkin/Petrov mixed finite element method for the stationary Navier-Stokes equations. Mathematics of Computation, 60, 531–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Luo, Z. D., Zhu, J., and Wang, H. J. A nonlinear Galerkin/Petrov-least squares mixed element method for the stationary Navier-Stokes equation. Applied Mathematics and Mechanics (English Edition), 23(7), 783–793 (2002) DOI 10.1007/BF02439

    Article  MathSciNet  MATH  Google Scholar 

  3. Luo, Z. D., Mao, Y. K., and Zhu, J. Galerkin-Petrov least squares mixed element method for stationary incompressible magnetohydrodynamics. Applied Mathematics and Mechanics (English Edition), 28(3), 395–404 (2007) DOI 10.1007/s10483-007-0312-x

    Article  MathSciNet  MATH  Google Scholar 

  4. Hughes, T. J. and Tezduyar, T. E. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 45, 217–284 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson, C. and Saranen, J. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations. Mathematics of Computation, 47, 1–18 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Luo, Z. D. and Lu, X. M. A least squares Galerkin/Petrov mixed finite element method for the stationary conduction convection problems. Mathematic Numerica Sinica, 25(2), 231–244 (2003)

    MathSciNet  Google Scholar 

  7. Sun, P., Luo, Z. D., and Chen, J. A Petrov least squares mixed finite element method for the nonstationary conduction convection problems. Mathematica Numerica Sinica, 31(1), 87–98 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Luo, Z. D., Chen, J., Navon, I. M., and Zhu, J. An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. International Journal for Numerical Methods in Fluids, 60, 409–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mesquita, M. S. and de Lemos, M. J. S. Optimal multigrid solutions of two dimensional convection conduction problems. Applied Mathematics and Computation, 152(3), 725–742 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, Q. W., Yang, M., and Tao, W. Q. Natural convection in a square enclosure with an internal isolated vertical plate. Warme-Stoffubertrag, 29, 161–169 (1994)

    Article  Google Scholar 

  11. Yang, M., Tao, W. Q., Wang, Q. W., and Lue, S. S. On identical problems of natural convection in enclosure and applications of the identity character. Journal of Thermal Science, 2(2), 116–125 (1993)

    Article  Google Scholar 

  12. Luo, Z. D. The Bases and Applications of Mixed Finite Element Methods (in Chinese), Chinese Science Press, Beijing (2006)

    Google Scholar 

  13. Luo, Z. D., Zhu, J., Xie, Z. H., and Zhang, G. F. A difference scheme and numerical simulation based on mixed finite element method for natural convection problem. Applied Mathematics and Mechanics (English Edition), 24(9), 973–983 (2003) DOI 10.1007/BF02437642

    MathSciNet  Google Scholar 

  14. Si, Z. Y. and He, Y. N. A coupled Newton iterative mixed finite element method for stationary conduction convection problems. Computing, 89(1–2), 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y. Z., Hou, Y. R., and Zou, H. L. A posteriori error estimation and adaptive computation of conduction convection problems. Applied Mathematical Modelling, 35, 2336–2347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Babuska, I. and Strouboulis, T. The Finite Element Method and Its Reliability, Oxford University Press, London (2001)

    Google Scholar 

  17. Chen, Z. X. Finite Element Methods and Their Applications, Springer-Verlag, Heidelberg (2005)

    MATH  Google Scholar 

  18. Zheng, H. B., Hou, Y. R., and Shi, F. Adaptive variational multiscale methods for incompressible flow based on two local Gauss integrations. Journal of Computational Physics, 229(19), 7030–7041 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zheng, H. B., Hou, Y. R., and Shi, F. A posteriori error estimates of stabilization of low-order mixed finite elements for incompressible flow. SIAM Journal on Scientific Computing, 32, 1346–1361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, Z. D. and Zhu, J. A nonlinear Galerkin mixed element method and a posteriori error estimator for the stationary Navier-Stokes equations. Applied Mathematics and Mechanics (English Edition), 23(10), 1194–1206 (2002) DOI 10.1007/BF02437668

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, Y. Z. and Hou, Y. R. Posteriori analysis of unsteady Navier-Stokes equations with the coriolis force. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 18(2), 229–244 (2011)

    MathSciNet  Google Scholar 

  22. Ervin, V. J., Layton, W. J., and Maubach, J. M. An adaptive defect correction method for viscous incompressible flow problems. SIAM Journal on Numerical Analysis, 37, 1165–1185 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verfürth, R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley Teubner, New York (1996)

    MATH  Google Scholar 

  24. Berrone, S. Adaptive discretization of stationary and incompressible Navier-Stokes equations by stabilized finite element methods. Computer Methods in Applied Mechanics and Engineering, 190, 4435–4455 (2001)

    Article  MathSciNet  Google Scholar 

  25. Verfürth, R. A posteriori error estimates for nonlinear problems, finite element discretizations of elliptic equations. Mathematics of Computation, 62, 445–475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ervin, V. J. and Louis, N. N. A posteriori error estimation and adaptive computation of viscoelastic fluid flows. Numerical Methods for Partial Differential Equations, 21, 297–322 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Du, Q. and Zhang, J. Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM Journal on Scientific Computing, 30(3), 1634–1657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Verfürth, R. A posteriori error estimators for the Stokes equations. Numerische Mathematik, 55, 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Adams, R. Sobolev Space, Pure and Applied Mathematics, Vol. 65, Academic Press, New York (1975)

    Google Scholar 

  30. Hou, Y. R. and Mei, L. Q. Full discrete two-level correction scheme for Navier-Stokes equations. Journal of Computational Mathematics, 26(2), 209–226 (2008)

    MathSciNet  MATH  Google Scholar 

  31. He, Y. N. and Li, J. Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 198, 1351–1359 (2009)

    Article  MathSciNet  Google Scholar 

  32. Temam, R. Navier-Stokes Equation: Theory and Numerical Analysis, 3rd ed., North-Holland Publishing Co., Amsterdam/New York (1984)

    MATH  Google Scholar 

  33. Clément, P. Approximation by finite element functions using local regularization. RAIRO Analyse Numérique, 9(2), 77–84 (1975)

    Google Scholar 

  34. Hecht, F., Pironneau, O., Hyaric, A. L., and Ohtsuka, K. FreeFem++, Preprint at <http://www.freefem.org/ff++> (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ren Hou  (侯延仁).

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10871156 and 11171269) and the Fund of Xi’an Jiaotong University (No. 2009xjtujc30)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yz., Hou, Yr. & Wei, Hb. Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems. Appl. Math. Mech.-Engl. Ed. 32, 1269–1286 (2011). https://doi.org/10.1007/s10483-011-1499-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1499-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation