Skip to main content
Log in

Numerical simulation of particle sedimentation in 3D rectangular channel

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The 3D lattice Boltzmann method is used to simulate particle sedimentation in a rectangular channel. The results of single particle sedimentation indicate that the last position of the particle is along the center line of the channel regardless of the initial position, the particle diameter, and the particle Reynolds number. The wall effect on the terminal velocity is in good agreement with experimental results quantitatively. The drafting, kissing, and tumbling (DKT) process is reproduced and analyzed by simulating two-particle cluster sedimentation. The effects of the diameter ratio, initial position, and wall on the DKT process are investigated. When the two particles have equal diameter sediment in the rectangular channel, a periodical DKT process and the spiraling trajectory are found. The last equilibrium configuration is obtained from the simulation results. The interesting regular sedimentation phenomena are found when 49 particles fall down under gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shinbrot, T. The Brazil nut effect: in reverse. nature, 429(6990), 352–353 (2004)

    Article  Google Scholar 

  2. Mobius, M. E., Lauderdale, B. E., Nagel, S. R., and Jaeger, H. M. Size separation of granular particles. nature, 414(6861), 270 (2001)

    Article  Google Scholar 

  3. Shao, X. M., Liu, Y., and Yu, Z. S. Interactions between two sedimenting particles with different sizes. Applied Mathematics and Mechanics (English Edition), 26(3), 407–414 (2005) DOI 10.1007/BF02440092

    Article  MATH  Google Scholar 

  4. Sun, R. and Chwang, A. T. Interactions between two touching spherical particles in sedimentation. Physical Review E, 76(4), 046316 (2007)

    Article  Google Scholar 

  5. Subramanian, G. and Koch, D. L. Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. Journal of Fluid Mechanics, 603, 63–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aidun, C. K. and Ding, E. J. Dynamics of particle sedimentation in a vertical channel: period-doubling bifurcation and chaotic state. Physics of Fluids, 15(6), 1612–1621 (2003)

    Article  MathSciNet  Google Scholar 

  7. Qi, D. W. and Luo, L. S. Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. Journal of Fluid Mechanics, 477, 201–213 (2003)

    Article  MATH  Google Scholar 

  8. Feng, Z. G. and Michaelides, E. E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems. Journal of Computational Physics, 195(2), 602–628 (2004)

    Article  MATH  Google Scholar 

  9. Niu, X. D., Shu, C., Chew, Y. T., and Peng, Y. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Physics Letters A, 354(3), 173–182 (2006)

    Article  MATH  Google Scholar 

  10. Singh, P. and Joseph, D. D. Sedimentation of a sphere near a vertical wall in an Oldroyd-B fluid. Journal of Non-Newtonian Fluid Mechanics, 94(2), 179–203 (2000)

    Article  MATH  Google Scholar 

  11. Feng, J., Hu, H. H., and Joseph, D. D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid, part 1. sedimentation. Journal of Fluid Mechanics, 261, 95–134 (1994)

    Article  MATH  Google Scholar 

  12. Patankar, N. A., Singh, P., Joseph, D. D., Glowinskim, R., and Panm, T. W. New formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flow, 26(10), 1509–1524 (2000)

    Article  MATH  Google Scholar 

  13. Ladd, A. J. C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part I. theoretical foundation. Journal of Fluid Mechanics, 271, 285–309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, Z. G. and Michaelides, E. E. Proteus: a direct forcing method in the simulations of particulate flows. Journal of Computational Physics, 202(1), 20–51 (2005)

    Article  MATH  Google Scholar 

  15. Wu, J. and Shu, C. Particulate flow simulation via a boundary condition-enforced immersed boundary-lattice Boltzmann scheme. Communications in Computational Physics, 7(4), 793–812 (2010)

    MathSciNet  Google Scholar 

  16. Ladd, A. J. C. and Verberg, R. Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics, 104(5–6), 1191–1251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguyen, N. Q. and Ladd, A. J. C. Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Physical Review E, 66(4), 046708 (2002)

    Article  Google Scholar 

  18. Singh, P., Joseph, D. D., Hesla, T. I., Glowinski, R., and Pan, T. W. Distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows. Journal of Non-Newtonian Fluid Mechanics, 91(2), 165–188 (2000)

    Article  MATH  Google Scholar 

  19. Vasseur, P. and Cox, R. G. The lateral migration of a spherical particles sedimenting in a stagnant bounded fluid. Journal of Fluid Mechanics, 80, 561–591 (1977)

    Article  MATH  Google Scholar 

  20. Miyamura, A., Iwasaki, S., and Ishii, T. Experimental wall correction factors of singile solid spheres in triangular and square cylinders, and parellel plates. International Journal of Multiphase Flow, 7(1), 41–46 (1981)

    Article  Google Scholar 

  21. Wang, Y. L. Simulation of sedimentation of two circular particles with collision considered in vertical channel. Applied Mathematics and Mechanics (English Edition), 27(7), 983–991 (2006) DOI 10.1007/s10483-006-0715-y

    Article  MATH  Google Scholar 

  22. Vanroyen, C., Omari, A., Toutain, J., and Reungoat, D. Interactions between hard spheres sedimenting at low Reynolds number. European Journal of Mechanics, B/Fluids, 24(5), 586–595 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ma-lin Liu  (刘马林).

Additional information

Project partly supported by the National Science and Technology Major Project (No. ZX06901)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Ml. Numerical simulation of particle sedimentation in 3D rectangular channel. Appl. Math. Mech.-Engl. Ed. 32, 1147–1158 (2011). https://doi.org/10.1007/s10483-011-1488-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1488-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation