Skip to main content
Log in

Hydromagnetic flow through uniform channel bounded by porous media

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible, and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability, Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makinde, O. D. Magneto-hydrodynamic stability of plane-Poiseuille flow using multideck asymptotic technique. Mathematical and Computer Modelling, 37(3), 251–259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rao, A. R. and Deshikachar, K. S. MHD oscillatory flow of blood through channels of variable cross section. Int. J. Engng. Sci., 24(10), 1615–1628 (1986)

    Article  MATH  Google Scholar 

  3. Berman, S. Laminar flow in channels with porous walls. J. Appl. Phys., 24(9), 1232–1235 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sellars, J. R. Laminar flow in channels with porous walls at high suction Reynolds number. J. Appl. Phys., 26(4), 489–490 (1955)

    Article  MATH  Google Scholar 

  5. Yuan, S. W. Further investigations of laminar flow in channels with porous walls. J. Appl. Phys., 27(3), 267–269 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wallace, W. E., Pierce, C. I., and Swayer, W. K. Technical Report TN23, US Bureau of Mines (1969)

  7. Rudraiah, N., Ramaiah, B. K., and Rajasekhar, B. M. Hartmann flow over a permeable bed. Int. J. Engng. Sci., 13(1), 1–24 (1975)

    Article  MATH  Google Scholar 

  8. Beavers, G. S. and Joseph, D. D. Boundary conditions at a naturally permeable wall. J. Fluid Mech., 30(1), 197–207 (1967)

    Article  Google Scholar 

  9. Richardson, S. A model for the boundary condition of a porous material-Part 2. J. Fluid Mech., 49(2), 327–336 (1971)

    Article  MATH  Google Scholar 

  10. Rajasekhar, B. M. Experimental and Theoretical Study of Flow of Fluids Past Porous Media, Ph. D. dissertation, Banglore University (1974)

  11. Rudraiah, N. and Veerbhadraiah, R. Temperature distribution in Couette flow past a permeable bed. Proceedings Mathematical Sciences, 86(6), 537–547 (1977)

    Google Scholar 

  12. Darcy, H. Les Fountains Publique De La Ville De Dijon, Delmont, Paris (1856)

    Google Scholar 

  13. Van Lankveld, M. A. M. Validation of Boundary Conditions Between a Porous Medium and a Viscous Fluid, Eindhoven University of Technology (1991)

  14. Srivastava, A. C. Flow of a second-order fluid through a circular pipe and its surrounding porous medium. Bulletin Gauhati University Mathematics Association, 3, 1–8 (1996)

    Google Scholar 

  15. Singh, R. and Lawrence, L. Influence of slip velocity at a membrane surface on ultra-filtration performance-II (tube flow system). International Journal of Heat and Mass Transfer, 22(5), 731–737 (1979)

    Article  MATH  Google Scholar 

  16. Pal, D., Veerabhadraiah, R., Shivakumar, P. N., and Rudraiah, N. Longitudinal dispersion of tracer particles in a channel bounded by porous media using slip condition. Int. J. Math. Sci., 7(4), 755–764 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khan, M., Hayat, T., and Wang, Y. Slip effects on shearing flows in a porous medium. Acta Mechanica Sinica, 24(1), 51–59 (2008)

    Article  MathSciNet  Google Scholar 

  18. Makinde, O. D. and Osalusi, E. MHD flow in a channel with slip at the permeable boundaries. Romania Journal of Physics, 51(3), 319–328 (2006)

    Google Scholar 

  19. Ganesh, S. and Krishnambal, S. Magnetohydrodynamic flow of viscous fluid between two parallel porous plates. Journal of Applied Sciences, 6(11), 2420–2425 (2006)

    Article  Google Scholar 

  20. Chandrasekhara, B. D. and Rudraiah, N. MHD flow through a channel of varying gap. Indian Journal of Pure and Applied Mathematics, 11(8), 1105–1123 (1980)

    MATH  MathSciNet  Google Scholar 

  21. Shivakumar, P. N., Nagaraj, S., Veerabhadraiah, R., and Rudraiah, N. Fluid movement in a channel of varying gap with permeable walls covered by porous media. Int. J. Engng. Sci., 24(4), 479–492 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sparrow, E. M. and Cess, R. D. Magnetohydrodynamic flow and heat transfer about a rotating disc. J. Appl. Mech., 29, 181–187 (1962)

    MathSciNet  Google Scholar 

  23. Roberts, P. H. An Introduction to Magnetohydrodynamics, Longmans Publications, London (1967)

    Google Scholar 

  24. Langlois, W. F. Creeping viscous flow through a two dimensional channel. Proc. Third U.S. Nat. Cong. Appl. Mech., 777–783 (1958)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, K., Shailendhra, K. Hydromagnetic flow through uniform channel bounded by porous media. Appl. Math. Mech.-Engl. Ed. 32, 837–846 (2011). https://doi.org/10.1007/s10483-011-1463-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1463-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation