Skip to main content
Log in

Stability and dispersion analysis of reproducing kernel collocation method for transient dynamics

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A reproducing kernel collocation method based on strong formulation is introduced for transient dynamics. To study the stability property of this method, an algorithm based on the von Neumann hypothesis is proposed to predict the critical time step. A numerical test is conducted to validate the algorithm. The numerical critical time step and the predicted critical time step are in good agreement. The results are compared with those obtained based on the radial basis collocation method, and they are in good agreement. Several important conclusions for choosing a proper support size of the reproducing kernel shape function are given to improve the stability condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gingold, R. A. and Monaghan, J. J. Smoothed particle hydrodynamics: theory and application to nonspherical stars. Royal Astronomical Society, Monthly Notices, 181, 375–389 (1977)

    MATH  Google Scholar 

  2. Nayroles, B., Touzot, G., and Villon, P. Generalizing the finite element method: diffuse approximation and diffuse elements. Computational Mechanics, 10(5), 307–318 (1992)

    Article  MATH  Google Scholar 

  3. Belytschko, T., Lu, Y. Y., and Gu, L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Melenk, J. M. and Babuska, I. The partition of unity finite element method: basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duarte, C. A. and Oden, J. T. An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 237–262 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu, W. K., Jun, S., and Zhang, Y. F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20(8–9), 1081–1106 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J. S., Pan, C. H., Wu, C. T., and Liu, W. K. Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 195–227 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sukumar, N., Moran, B., and Belytschko, T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 43(5), 839–887 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atluri, S. N. and Zhu, T. L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Computational Mechanics, 25(2–3), 169–179 (2000)

    Article  MATH  Google Scholar 

  10. Kansa, E. J. Multiqudrics — a scattered data approximation scheme with applications to computational fluid-dynamics — I. surface approximations and partial derivatives. Computers and Mathematics with Applications, 19(8–9), 127–145 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kansa, E. J. Multiqudrics — a scattered data approximation scheme with applications to computational fluid-dynamics — II. solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers and Mathematics with Applications, 19(8–9), 147–161 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Chen, J. S., and Osher, S. A multiple level set method for modeling grain boundary evolution of polycrystalline materials. Interaction and Multiscale Mechanics, 1, 178–191 (2008)

    Google Scholar 

  13. Belytschko, T., Kronggaus, Y., Organ, D., and Fleming, M. Meshless methods: an overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 3–47 (1996)

    Article  MATH  Google Scholar 

  14. Zhang, X., Liu, Y., and Ma, S. Meshfree methods and their applications (in Chinese). Advances in Mechanics, 39(1), 1–36 (2009)

    Article  MATH  Google Scholar 

  15. Liu, G. R. Meshfree Methods: Moving Beyond the Finite Element Method, 2nd ed., CRC Press (2009)

  16. Zhang, X., Song, K. Z., Lu, M. W., and Liu, X. Meshless methods based on collocation with radial basis function. Computational Mechanics, 26(4), 333–343 (2000)

    Article  MATH  Google Scholar 

  17. Huang, J., Zhang, J., and Chen, G. G. Stability of Schrödinger-Poisson type equations. Applied Mathematics and Mechanics (English Edition), 30(17), 1469–1474 (2009) DOI 10.1007/s10483-009-1113-y

    Article  MathSciNet  MATH  Google Scholar 

  18. Ye, Z. A new finite element formulation for planar elastic deformation. International Journal for Numerical Methods in Engineering, 40(20), 2579–2591 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhu, H. H., Yang, B. H., Cai, Y. C., and Xu, B. Application of meshless natural element method to elastoplastic analysis (in Chinese). Rock and Soil Mechanics, 25(4), 671–674 (2004)

    Google Scholar 

  20. Xiong, Y. B. and Long, S. Y. An analysis of plates on the winkler foundation with the meshless local Petrov-Galerkin method (in Chinese). Journal of Hunan University (Natural Science), 31(4), 101–105 (2004)

    Google Scholar 

  21. Li, S. C. and Chen, Y. M. Meshless numerical manifold method based on unit partition (in Chinese). Acta Mechanica Sinica, 36(4), 496–500 (2004)

    Google Scholar 

  22. Hu, H. Y., Chen, J. S., and Hu, W. Error analysis of collocation method based on reproducing kernel approximation. Numerical Methods for Partial Differential Equations, 27(3), 554–580 (2009)

    Article  Google Scholar 

  23. Hu, H. Y., Lai, C. K., and Chen, J. S. A study on convergence and complexity of reproducing kernel particle method. Interaction and Multiscale Mechanics, 2, 295–319 (2009)

    Google Scholar 

  24. Lucy, L. A numerical approach to testing the fission hypothesis. The Astronomical Journal, 82(18), 1013–1024 (1977)

    Article  Google Scholar 

  25. Monoghan, J. J. Why particle methods work. SIAM Journal on Scientific and Statistical Computing, 3(4), 422–433 (1982)

    Article  Google Scholar 

  26. Monoghan, J. J. An introduction to SPH. Computer Physics Communications, 48(1), 89–96 (1988)

    Article  Google Scholar 

  27. Randles, P. W. and Libersky, L. D. Smoothed particle hydrodynamics: some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 375–408 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, W. K., Jun, S., Li, S., Adee, J., and Belytschko, B. Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 38(10), 1655–1679 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, W. K. and Chen, Y. Wavelet and multiple scale reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 21(16), 901–931 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, J. S., Pan, C., Roque, M. O. L., and Wang, H. P. A Lagrangian reproducing kernel particle method for metal forming analysis. Computational Mechanics, 22(3), 289–307 (1998)

    Article  MATH  Google Scholar 

  31. Luo, H. Z., Chen, J. S., Hu, H. Y., and Huang, X. C. Stability of radial basis collocation method for transient dynamics. Journal of Shanghai Jiaotong University (English Edition), 15(5), 615–621 (2010) DOI 10.1007/s12204-010-1057-4

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-chun Huang  (黄醒春).

Additional information

Project supported by the Western Transport Technical Project of Ministry of Transport of China (No. 2009318000046)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Hz., Liu, Xw. & Huang, Xc. Stability and dispersion analysis of reproducing kernel collocation method for transient dynamics. Appl. Math. Mech.-Engl. Ed. 32, 777–788 (2011). https://doi.org/10.1007/s10483-011-1457-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1457-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation