Skip to main content
Log in

Chebyshev finite spectral method with extended moving grids

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A Chebyshev finite spectral method on non-uniform meshes is proposed. An equidistribution scheme for two types of extended moving grids is used to generate grids. One type is designed to provide better resolution for the wave surface, and the other type is for highly variable gradients. The method has high-order accuracy because of the use of the Chebyshev polynomial as the basis function. The polynomial is used to interpolate the values between the two non-uniform meshes from a previous time step to the current time step. To attain high accuracy in the time discretization, the fourth-order Adams-Bashforth-Moulton predictor and corrector scheme is used. To avoid numerical oscillations caused by the dispersion term in the Korteweg-de Vries (KdV) equation, a numerical technique on non-uniform meshes is introduced. The proposed numerical scheme is validated by the applications to the Burgers equation (nonlinear convectiondiffusion problems) and the KdV equation (single solitary and 2-solitary wave problems), where analytical solutions are available for comparisons. Numerical results agree very well with the corresponding analytical solutions in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjerid, S. and Flaherty, J. E. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM Journal on Numerical Analysis, 23(4), 778–796 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, D. A. Equidistribution schemes, poisson generators, and adaptive grids. Applied Mathematics and Computation, 24(3), 211–227 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, W. Z., Ren, Y. H., and Russell, R. D. Moving mesh methods based on moving mesh partial-differential equations. Journal of Computational Physics, 113(2), 279–290 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Huang, W. Z. and Russell, R. D. A moving collocation method for solving time dependent partial differential equations. Applied Numerical Mathematics, 20(1–2), 101–116 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Budd, C. J., Huang, W. H., and Russell, R. D. Moving mesh methods for problems with blow-up. SIAM Journal on Scientific Computing, 17(2), 305–327 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, W. Z. and Russell, R. D. Analysis of moving mesh partial differential equations with spatial smoothing. SIAM Journal on Numerical Analysis, 34(3), 1106–1126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dorfi, E. A. and Drury, L. O’C. Simple adaptive grids for 1-D initial value problems. Journal of Computational Physics, 69(1), 175–195 (1987)

    Article  MATH  Google Scholar 

  8. Beckett, G., Mackenzie, J. A., Ramage, A., and Sloan, D. M. On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution. Journal of Computational Physics, 167(2), 372–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, W. M., Huang, W. Z., and Russell, R. D. A moving mesh method based on the geometric conservation law. SIAM Journal on Scientific Computing, 24(1), 118–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tang, H. Z. A moving mesh method for the Euler flow calculations using a directional monitor function. Communications in Computational Physics, 1(4), 656–676 (2006)

    Google Scholar 

  11. Soheili, A. R. and Stockie, J. M. A moving mesh method with variable mesh relaxation time. Applied Numerical Mathematics, 58(3), 249–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tan, Z., Lim, K. M., and Khoo, B. C. An adaptive moving mesh method for two-dimensional incompressible viscous flows. Communications in Computational Physics, 3(3), 679–703 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Li, R., Tang, T., and Zhang, P. W. Moving mesh methods in multiple dimensions based on harmonic maps. Journal of Computational Physics, 170, 562–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Patera, A. T. A spectral element method for fluid-dynamics-laminar-flow in a channel expansion. Journal of Computational Physics, 54(3), 468–488 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghaddar, N. K., Karniadakis, G. E., and Patera, A. T. A conservative isoparametric spectral element method for forced convection: application to fully developed flow in periodic geometries. Numerical Heat Transfer, Part A: Applications, 9(3), 277–300 (1986)

    Article  Google Scholar 

  16. Giraldo, F. X. Strong and weak Lagrange-Galerkin spectral element methods for the shallow water equations. Computers and Mathematics with Applications, 45, 97–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Y., Vinokur, M., and Wang, Z. J. Spectral difference method for unstructured grids I: basic formulation. Journal of Computational Physics, 216(2), 780–801 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, C., Kannan, R., and Wang, Z. J. A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids. Computers and Fluids, 38(2), 254–265 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kopriva, D. A. A conservative staggered-grid Chebyshev multidomain method for compressible flows, II: semi-structured method. Journal of Computational Physics, 128(2), 475–488 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopriva, D. A. A staggered-grid multi-domain spectral method for the Euler and Navier-Stokes equations on unstructured grids. Journal of Computational Physics, 143(1), 125–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, J. P. Non-periodic Fourier tansform and finite spectral method. Proceedings of 6th International Symposium: Computational Fluid Dynamics, Lake Tahoe, 1339–1344 (1995)

  22. Wang, J. P. Finite spectral method based on non-periodic Fourier transform. Computers and Fluids, 27(5–6), 639–644 (1998)

    Article  MATH  Google Scholar 

  23. Zhan, J. M. and Li, Y. S. Generalized finite spectral method for 1D Burgers and KdV equations. Applied Mathematics and Mechanics (English Edition), 27(12), 1635–1643 (2006) DOI 10.1007/s10483-006-1206-z

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y. S. and Zhan, J. M. Chebyshev finite-spectral method for 1D Boussinesq-type equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 132(3), 212–223 (2006)

    Article  Google Scholar 

  25. Zhan, J. M., Lin, D., and Li, Y. S. Chebyshev generalized finite spectral method for linear and nonlinear waves (in Chinese). Acta Physica Sinica, 56(7), 3649–3654 (2007)

    MathSciNet  Google Scholar 

  26. Price, T. E. Pointwise error estimates for interpolation. Journal of Computational and Applied Mathematics, 19(3), 389–393 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Su, C. H. and Gardner, C. S. Derivation of the Korteweg-de Vries and Burgers equation. Journal of Mathematical Physics, 10, 536–539 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y. S. and Zhan, J. M. Boussinesq-type model with boundary-fitted coordinate system. Journal of Waterway, Port, Coastal and Ocean Engineering, 127(3), 152–160 (2001)

    Article  Google Scholar 

  29. Beji, S. and Nadaoka, K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth. Ocean Engineering, 23, 691–704 (1996)

    Article  Google Scholar 

  30. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. Numerical Recipes, Cambridge University Press, New York, 569–572 (1989)

    MATH  Google Scholar 

  31. Wei, G. and Kirby, J. T. Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 121(5), 251–260 (1995)

    Article  Google Scholar 

  32. Kaya, D. An application of the decomposition method for the KdVB equation. Applied Mathematics and Computation, 152, 279–288 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dodd, R. K., Eilbeck, J. C., Gibbon, J. D., and Morris, H. C. Solitons and Nonlinear Wave Equations, Academic Press, New York (1984)

    Google Scholar 

  34. Li, P. W. On the numerical study of the KdV equation by the semi-implicit and leap-frog method. Computer Physics Communications, 88, 121–127 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie-min Zhan  (詹杰民).

Additional information

Communicated by Biao WANG

Project supported by the Research Grants Council of Hong Kong (No. 522007) and the National Marine Public Welfare Research Projects of China (No. 201005002)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, Jm., Li, Ys. & Dong, Z. Chebyshev finite spectral method with extended moving grids. Appl. Math. Mech.-Engl. Ed. 32, 383–392 (2011). https://doi.org/10.1007/s10483-011-1423-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1423-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation