Skip to main content
Log in

Buckling of embedded microtubules in elastic medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Motivated by the application of Winkler-like models for the buckling analysis of embedded carbon nanotubes, an orthotropic Winkler-like model is developed to study the buckling behavior of embedded cytoskeletal microtubules within the cytoplasm. Experimental observations of the buckling of embedded cytoskeletal microtubules reveal that embedded microtubules bear a large compressive force as compared with free microtubules. The present theoretical model predicts that embedded microtubules in an elastic medium bear large compressive forces than free microtubules. The estimated critical pressure is in good agreement with the experimental values of the pressure-induced buckling of microtubules. Moreover, due to the mechanical coupling of microtubules with the surrounding elastic medium, the critical buckling force is increased considerably, which well explains the theory that the mechanical coupling of microtubules with an elastic medium increases compressive forces that microtubules can sustain. The model presented in the paper is a good approximation for the buckling analysis of embedded microtubules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem., 69(1), 277–302 (2000)

    Article  Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. Molecular Biology of the Cell, 4th ed., Garland Science, New York, 1463 (2005)

    Google Scholar 

  3. Carter, N. J. and Cross, R. A. Mechanics of the kinesin step. Nature, 435(3), 308–312 (2005)

    Article  Google Scholar 

  4. Schoutens, J. E. J. A model describing bending in Flagella. J. Biol. Phys., 30(2), 97–122 (2004)

    Article  MathSciNet  Google Scholar 

  5. Boal, D. Mechanics of the Cell, Cambridge University Press, Cambridge (2002)

    Google Scholar 

  6. Kolodney, M. S. and Wysolmerski, R. B. Isometric contraction by fibroblasts and Endothelial cells in tissue culture: a quantitative study. J. Cell Biol., 117(1), 73–82 (1992)

    Article  Google Scholar 

  7. Stamenovic, D., Liang, Z., Chen, J., and Wang, N. Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells. J. Appl. Physiol., 92(4), 1443–1450 (2002)

    Google Scholar 

  8. Zheng, J., Buxbaum, R. E., and Heidemann, S. R. Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation. J. Cell Sci., 104(4), 1239–1250 (1993)

    Google Scholar 

  9. Odde, D. J., Ma, L., Briggs, A. H., Demarco, A., and Kirschner, M. W. Microtubule bending and breaking in living cells. J. Cell Sci., 112(19), 3283–3288 (1999)

    Google Scholar 

  10. Needleman, D. J., Ojeda-Lopez, M. A., Ewert, K., Miller, H. P., Wilson, L., and Safinya, C. R. Radial compression of microtubules and the mechanism of action of taxol and associated proteins. Biophys. J., 89(5), 3410–3423 (2005)

    Article  Google Scholar 

  11. Needleman, D. J., Ojeda-Lopez, M. A., Raviv, U., Ewert, K., Jones, J. B., Miller, H. P. L., Wilso, L., and Safinya, C. R. Synchrotron X-ray differection study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys. Rev. Lett., 93(19), 1981041–1981044 (2004)

    Article  Google Scholar 

  12. Felgner, H., Frank, R., Biernat, J., Mandelkow, E. M., Madelkow, E., Ludin, B., Matus, A., and Schliwa, M. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol., 138(5), 1067–1075 (1997)

    Article  Google Scholar 

  13. Brangwynne, C. P., MacKintosh, F. C., Kumar, S., Geisse, N. A., Talbot, J., Mahadevan, L., Parker, K. K., Ingber, D. E., and Weitz, D. A. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol., 173(5), 733–741 (2006)

    Article  Google Scholar 

  14. Li, T. A mechanics model of microtubule buckling in living cells. J. Biomech., 41(8), 1722–1729 (2008)

    Article  Google Scholar 

  15. Wang, C. Y., Ru, C. Q., and Mioduchowski, A. Orthotropic elastic shell model for buckling of microtubules. Phys. Rev. E, 74(5), 052901 (2006)

    Article  Google Scholar 

  16. Kis, A., Kasas, S., Babič, B., Kulik, A. J., Benoît, W., Briggs, G. A. D., Schönenberger C., Catsicas S., and Forrò, L. Nanomechanics of microtubules. Phys. Rev. Lett., 89(24), 248101 (2002)

    Article  Google Scholar 

  17. Nogales, E., Whittaker, M., Milligan, R. A., and Downing, K. H. High-resolution model of the microtubule. Cell, 96(1), 79–88 (1999)

    Article  Google Scholar 

  18. Qian, X. S., Zhang, J. Q., and Ru, C. Q. Wave propagation in orthotropic microtubules. J. Appl. Phys., 101(8), 084702 (2007)

    Article  Google Scholar 

  19. Lourie, O., Cox, D. M., and Wagner, H. D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett., 81(8), 1638–1641 (1998)

    Article  Google Scholar 

  20. Yoon, J., Ru, C. Q., and Mioduchowski, A. Sound wave propagation in multiwall carbon nanotubes. J. Appl. Phys., 93(8), 4801–4806 (2003)

    Article  Google Scholar 

  21. Ventsel, E. and Krauthammer, T. Thin Plates and Shells, Marcel Dekker, New York (2004)

    Google Scholar 

  22. Pablo, P. J., Schaap, I. A. T., Mackintosh, F. C., and Schmidt, C. F. Deformation and collapse of microtubules on the nanometer scale. Phys. Rev. Lett., 91(9), 098101–098114 (2003)

    Article  Google Scholar 

  23. Sirenko, M., Stroscio, M., and Kim, K. W. Elastic vibrations of microtubules in a fluid. Phys. Rev. E, 53(1), 1003–1010 (1996)

    Article  Google Scholar 

  24. Flugge, W. Stresses in Shells, Springer-Verlag, Berlin (1960)

    Google Scholar 

  25. Ofek, G., Natoli, R. M., and Athanasiou, K. In situ mechanical properties of the chondrocyte cytoplasm and nucleus. J. Biomech., 42(7), 873–877 (2009)

    Article  Google Scholar 

  26. Leipzing, N. D. and Athanasiou, K. A. Unconfined creep compression of chondrocytes. J. Biomech., 38(1), 77–85 (2005)

    Google Scholar 

  27. Peng, Z. H., Yang, J. M., Si, S. H., Fang, D. C., Chen, W. S., and Luo, Y. H. Effects of metastasis-suppressor gene KAI1 on viscoelastic properties of hepatocellular carcinoma MHCC97-H cells with high metastatic potential. World Chin. J. Digestol., 12(5), 1040–1043 (2004)

    Google Scholar 

  28. Chajes, A. Principles of Structural Stability Theory, Prentice-Hall, Inc., New Jersey (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-qian Zhang  (张俊乾).

Additional information

Project supported by the National Natural Science Foundation of China (No. 10772105) and the Shanghai Leading Academic Discipline Project (No. S30106)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taj, M., Zhang, Jq. Buckling of embedded microtubules in elastic medium. Appl. Math. Mech.-Engl. Ed. 32, 293–300 (2011). https://doi.org/10.1007/s10483-011-1415-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1415-x

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation