Skip to main content
Log in

MHD stagnation point flow of a micropolar fluid towards a heated surface

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson’s extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hiemenz, K. Die grenzschicht an einem in dem gleichformingen flussigkeitsstrom eingetauchten gerade kreiszylinder. Dingler Polytechnic Journal, 326, 321–340 (1911)

    Google Scholar 

  2. Homann, F. Der einfluss grosser zahigkeit bei der stromung um den zylinder und um die kugel. ZAMM, 16, 153–164 (1936)

    Article  MATH  Google Scholar 

  3. Wang, C. Y. Impinging stagnation flows. Physics of Fluids, 30(3), 915–917 (1987)

    Article  Google Scholar 

  4. Ariel, P. D. Hiemenz flow in hydromagnetics. Acta Mechanica, 103, 31–43 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Mahapatra, T. R. and Gupta, A. S. Magnetohydrodynamic stagnation point flow towards a stretching sheet. Acta Mechanica, 152, 191–196 (2001)

    Article  MATH  Google Scholar 

  6. Chamkha, A. J. and Issa, C. Effects of heat generation/absorption and thermophoresis on hydromagnatic flow with heat and mass transfer over a flat surface. International Journal of Numerical Method for Heat and Fluid Flow, 10(4), 432–449 (2000)

    Article  MATH  Google Scholar 

  7. Zhu, J., Zheng, L. C., and Zhang, X. X. Analytic solution to stagnation point flow and heat transfer over a stretching sheet based on homotopy analysis. Applied Mathematics and Mechanics (English Edition), 30, 463–474 (2009) DOI 10.1007/s10483-009-0407-2

    Article  MATH  MathSciNet  Google Scholar 

  8. Hoyt, J. W. and Fabula, A. G. The Effect of Additives on Fluid Friction. U. S. Naval Ordinance Test Station Report (1964)

  9. Eringen, A. C. Theory of micropolar continua. Proceedings of the Ninth Midwestern Conference, 23 (1965)

  10. Eringen, A. C. Simple microfluids. Int. J. Eng. Sci., 2, 205–217 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eringen, A. C. Theory of micropolar fluids. J. Math., 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  12. Ariman, T., Turk, M. A., and Sylvester, N. D. Microcontinum fluid mechanics-a review. Int. J. Eng. Sci., 11, 905–930 (1973)

    Article  MATH  Google Scholar 

  13. Ariman, T., Turk, M. A., and Sylvester, N. D. Application of microcontinum fluid mechanics. Int. J. Eng. Sci., 12, 273–293 (1974)

    Article  MATH  Google Scholar 

  14. Guram, G. S. and Smith, C. Stagnation flows of micropolar fluids with strong and weak interactions. Comp. Math. Appl., 6, 213–233 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ahmadi, G. Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate. Int. J. Eng. Sci., 14, 639–646 (1976)

    Article  MATH  Google Scholar 

  16. Cheng, L. C. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and boundary effects. J. Phys. D: Appl. Phys., 39, 1132–1140 (2006)

    Article  Google Scholar 

  17. Lok, Y. Y., Pop, I., and Chamkha, A. J. Nonorthognal stagnation point flow of a micropolar fluid. Int. J. Eng. Sci., 45, 173–184 (2007)

    Article  MathSciNet  Google Scholar 

  18. Seddeek, M. A. Flow of a magneto micropolar fluid past a continuously moving plate. Physics Letters A, 306, 255–257 (2003)

    Article  Google Scholar 

  19. Ishak, A., Nazar, R., and Pop, I. Stagnation flow of a micropolar fluid towards a vertical permeable surface. International Communications in Heat and Mass Transfer, 35, 276–281 (2008)

    Article  Google Scholar 

  20. Ashraf, M., Anwar, K. M., and Syed, K. S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel. Computers and Fluids, 38, 1895–1902 (2009)

    Article  Google Scholar 

  21. Ashraf, M., Anwar, K. M., and Syed, K. S. Numerical investigations of asymmetric flow of a micropolar fluid between two porous disks. Acta Mechanica Sinica, 25, 787–794 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ishak, A., Jafar, K., Nazar, R., and Pop, I. MHD stagnation point flow towards a stretching sheet. Physica A, 388, 3377–3383 (2009)

    Article  Google Scholar 

  23. Ishak, A., Lok, Y. Y., and Pop, I. Stagnation point flow over a shrinking sheet in a micropolar fluid. Chem. Eng. Comm., 197, 1417–1427 (2010)

    Article  Google Scholar 

  24. Shercliff, J. A. A Text Book of Magnetohydrodynamics, Pergamon Press, Oxford (1965)

    Google Scholar 

  25. Rossow, V. J. On Flow of Electrically Conducting Fluids Over a Flat Plate in the Presence of a Transverse Magnetic Field, Tech. Report 1358, NACA (1958)

  26. Gerald, C. F. Applied Numerical Analysis, Addison Wesley Publishing Company Reading, Massachusetts (1974)

    Google Scholar 

  27. Milne, W. E. Numerical Solutions of Differential Equations, John Willy and Sons, New York (1953)

    Google Scholar 

  28. Hildebrand, F. B. Introduction to Numerical Analysis, Tata McGraw Hill Publishing Company, Delhi (1978)

    Google Scholar 

  29. Syed, K. S., Tupholme, G. E., and Wood, A. S. Iterative solution of fluid flow in finned tubes. Proceeding of the 10 th International Conference on Numerical Methods in Laminar and Turbulent Flow (eds. Taylo r, C. and Cross, J. T.), Pineridge Press, Swansea, 429–440 (1997)

    Google Scholar 

  30. Deuflhard, P. Order and step size control in extrapolation methods. Numer. Math., 41, 399–422 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guram, G. S. and Anwar, M. Micropolar flow due to a rotating disc with suction and injection. ZAMM, 61, 589–605 (1981)

    Article  MATH  Google Scholar 

  32. Takhar, H. S., Bhargaval, R., Agraval, R. S., and Balaji, A. V. S. Finite element solution of micropolar flow and heat transfer between two porous discs. Int. J. Eng. Sci., 38, 1907–1922 (2000)

    Article  Google Scholar 

  33. Ashraf, M., Anwar K. M., and Syed, K. S. Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk. Appl. Math. Mod., 33, 1933–1943 (2009)

    Article  MATH  Google Scholar 

  34. Pantokratoras, A. Comment on “laminar boundary layer flow over a horizontal permeable flat plate”. Appl. Math. Comput., 182, 1–2 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Pantokratoras, A. A common error made in investigation of boundary layer flows. Appl. Math. Mod., 33, 413–422 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M., Ashraf, M.M. MHD stagnation point flow of a micropolar fluid towards a heated surface. Appl. Math. Mech.-Engl. Ed. 32, 45–54 (2011). https://doi.org/10.1007/s10483-011-1392-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-011-1392-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation