Skip to main content
Log in

Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The paper deals with the theoretical investigation of a fundamental problem of biomagnetic fluid flow through a porous medium subject to a magnetic field by using the principles of biomagnetic fluid dynamics (BFD). The study pertains to a situation where magnetization of the fluid varies with temperature. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid. The walls of the channel are assumed to be stretchable, where the surface velocity is proportional to the longitudinal distance from the origin of coordinates. The problem is first reduced to solving a system of coupled nonlinear differential equations involving seven parameters. Considering blood as a biomagnetic fluid and using the present analysis, an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropriate finite difference scheme. The computational results are presented in graphical form, and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field. The results clearly indicate that the presence of a magnetic dipole bears the potential so as to affect the characteristics of the blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia. The study will attract the attention of clinicians, to whom the results would be useful in the treatment of cancer patients by the method of electromagnetic hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ξ, η:

non-dimensional coordinates

α :

dimensionless distance

H :

magnetic field strength

T :

temperature

\( \bar k \) :

permeability constant

K 1 :

pyromagnetic coefficient

M :

magnetization (magnetic moment per unit volume)

B :

ferromagnetic interaction parameter

K :

viscoelastic parameter

Re :

Reynolds number

Pr :

Prandtl number

K 2 :

permeability parameter

k 0 :

coefficient of visco-elasticity

ρ :

density of the fluid

p :

pressure

λ :

viscous dissipation parameter

μ :

dynamic viscosity

μ 0 :

magnetic permeability

c p :

specific heat at constant pressure

k :

thermal conductivity

u :

velocity along the horizontal direction

v :

velocity along the vertical direction.

References

  1. Nikiforov, V. N. Magnetic induction hyperthermia. Russian Physics Journal 50(9), 913–924 (2007)

    Article  Google Scholar 

  2. Jordan, A., Wust, P., Scholz, R., Tesche, B., Fähling, H., Mitrovics, T., Vogl, T., Carvós-Navarro, J., and Felix, R. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. International Journal of Hyperthermia 12(6), 705–722 (1996)

    Article  Google Scholar 

  3. Fiorentini, G. and Szasz, S. Hyperthermia today: electric energy, a new opportunity in cancer treatment. Journal of Cancer Research and Therapeutics 2(2), 41–46 (2006)

    Article  Google Scholar 

  4. Higashi, T., Yamagishi, A., Takeuchi, T., Kawaguchi, N., Sagawa, S., Onishi, S., and Date, M. Orientation of erythrocytes in a strong static magnetic field. Blood 82(4), 1328–1334 (1993)

    Google Scholar 

  5. Gasparovic, C. and Matweiyoff, N. A. The magnetic properties and water dynamics of the red blood cell. Magnetic Resonance in Medicine 26(2), 274–299 (1992)

    Article  Google Scholar 

  6. Higashi, T., Ashida, N., and Takeuchi, T. Orientation of blood cells in static magnetic field. Physica B: Condensed Matter 237, 616–620 (1997)

    Article  Google Scholar 

  7. Pauling, L. and Coryell, C. D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxy hemoglobin. Proceedings of the National Academy of Sciences of the United States of America 22(4), 210–216 (1936)

    Article  Google Scholar 

  8. Motta, M., Haik, Y., Gandhari, A., and Chen, C. J. High magnetic field effects on human deoxygenated hemoglobin light absorption. Bioelectrochemistry and Bioenergetics 47(2), 297–300 (1998)

    Article  Google Scholar 

  9. Bartoszek, M. and Drzazge, Z. A study of magnetic anisotropy of blood cells. Journal of Magnetism and Magnetic Materials 196(1–3), 573–575 (1999)

    Article  Google Scholar 

  10. Haik, Y., Pai, V., and Chen, C. J. Development of magnetic device for cell separation. Journal of Magnetism and Magnetic Materials 194(1–3), 254–261 (1999)

    Article  Google Scholar 

  11. Voltairas, P. A., Fotiadis, D. I., and Michalis, L. K. Hydrodynamics of magnetic drug targeting. Journal of Biomechanics 35(6), 813–821 (2002)

    Article  Google Scholar 

  12. Ruuge, E. K. and Rusetski, A. N. Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field. Journal of Magnetism and Magnetic Materials 122(1–3), 335–339 (1993)

    Article  Google Scholar 

  13. Badescou, V., Rotariu, O., Murariu, V., and Rezlescu, N. Transverse high gradient magnetic filter cell with bounded flow field. IEEE Transactions on Magnetics 33(6), 4439–4444 (1997)

    Article  Google Scholar 

  14. Andra, W. and Nowak, H. Magnetism in Medicine, Wiley VCH, Berlin (1998)

    Google Scholar 

  15. Plavins, J. and Lauva, M. Study of colloidal magnetite binding erythrocytes: prospects for cell separation. Journal of Magnetism and Magnetic Materials 122(1–3), 349–353 (1993)

    Article  Google Scholar 

  16. Berkovski, B. and Bashtovoy, V. Magnetic Fluids and Applications Handbook, Begell House Inc., New York (1996)

    Google Scholar 

  17. Blums, E., Cebers, A., and Maiorov, M. M. Magnetic Fluids, Walter de Gryuter, Berlin (1997)

    Google Scholar 

  18. Neuringer, J. L. and Rosensweig, R. E. Ferrohydrodynamics. Physics of Fluids 7, 1927–1937 (1964)

    Article  MathSciNet  Google Scholar 

  19. Rosensweig, R. E. Ferrohydrodynamics, Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  20. Rosensweig, R. E. Magnetic fluids. Annual Review of Fluid Mechanics 19, 437–463 (1987)

    Article  Google Scholar 

  21. Haik, Y., Pai, V., and Chen, C. J. Biomagnetic fluid dynamics. Fluid Dynamics at Interfaces (eds. Shyy, W. and Narayanan, R.), Cambridge University Press, Cambridge, 439–452 (1999)

    Google Scholar 

  22. Tzirtzilakis, E. E. and Kafoussias, N. G. Biomagnetic fluid flow over a stretching sheet with nonlinear temperature dependent magnetization. Zeitschrift für Angewandte Mathematik und Physik 54(4), 551–565 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tzirtzilakis, E. E., Xenos, M., Loukopoulos, V. C., and Kafoussias, N. G. Turbulent biomagnetic fluid flow in a rectangular channel under the action of a localized magnetic field. International Journal of Engineering Science 44(18–19), 1205–1224 (2006)

    Article  MathSciNet  Google Scholar 

  24. Andersson, H. I. and Valnes, O. A. Flow of a heated ferrofluid over a stretching sheet in the presence of magnetic dipole. Acta Mechanica 128(1–2), 39–47 (1998)

    Article  MATH  Google Scholar 

  25. Fukada, E. and Kaibara, M. Viscoelastic study of aggregation of red blood cells. Biorheology 17(1–2), 177–182 (1980)

    Google Scholar 

  26. Thurston, G. B. Viscoelasticity of human blood. Biophysical Journal 12(9), 1205–1217 (1972)

    Article  Google Scholar 

  27. Stoltz, J. F. and Lucius, M. Viscoelasticity and thixotropy of human blood. Biorheology 18(3–6), 453–473 (1981)

    Google Scholar 

  28. Misra, J. C. and Shit, G. C. Biomagnetic viscoelastic fluid flow over a stretching sheet. Applied Mathematics and Computation 210(2), 350–361 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Misra, J. C. and Shit, G. C. Flow of a biomagnetic viscoelastic fluid in a channel with stretching walls. Journal of Applied Mechanics 76(6), 061006 (2009)

    Article  Google Scholar 

  30. Misra, J. C., Shit, G. C., and Rath, H. J. Flow and heat transfer of an MHD viscoelastic fluid in a channel with stretching walls: some applications to hemodynamics. Computers and Fluids 37, 1–11 (2008)

    Article  MATH  Google Scholar 

  31. Misra, J. C., Pal, B., and Gupta, A. S. Hydromagnetic flow of second-grade fluid in a channel: some applications to physiological systems. Mathematical Models and Methods in Applied Sciences 8, 1323–1342 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pal, B., Misra, J. C., Pal, A., and Gupta, A. S. Hydromagnetic flow of a viscoelastic fluid in a parallel plate channel with stretching walls. Indian Journal of Mathematics 41, 231–247 (1999)

    MATH  MathSciNet  Google Scholar 

  33. Dunn, J. E. and Fosdick, R. L. Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Archive for Rational Mechanics and Analysis 56(3), 119–252 (1974)

    Article  MathSciNet  Google Scholar 

  34. Fosdick, R. L. and Rajagopal, K. R. Anomalous features in the model of second order fluids. Archive for Rational Mechanics and Analysis 70(2), 145–152 (1978)

    MathSciNet  Google Scholar 

  35. Schakenraad, J. M. and Lam, K. H. The influence of porosity and surface roughness on biocompatibility. Tissue Engineering of Vascular Prosthetic Grafts (ed. Zilla, P.), Landes Bioscience, Austin (1999)

    Google Scholar 

  36. Scheidegger, A. E. and Schwarz, W. H. Peristaltic flow of a second order fluid in tubes. Journal of Non-Newtonian Fluid Mechanics 53, 257–284 (1994)

    Article  Google Scholar 

  37. Varshney, C. L. The fluctuating flow of a viscous fluid through a porous medium bounded by a porous and horizontal surface. Indian Journal of Pure and Applied Mathematics 10(12), 1558–1564 (1979)

    MATH  Google Scholar 

  38. Raptis, A. and Perdikis, C. Flow of a viscous fluid through a porous medium bounded by a vertical surface. International Journal of Engineering Science 21(11), 1327–1330 (1983)

    Article  MATH  Google Scholar 

  39. Hayat, T., Qureshi, M. U., and Hussain, Q. Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space. Applied Mathematical Modelling 33(4), 1862–1873 (2009)

    Article  MATH  Google Scholar 

  40. Sacheti, N. C. Application of Brinkman model in viscous incompressible flow through a porous channel. Journal of Mathematical Physics 17(6), 567–577 (1983)

    MATH  Google Scholar 

  41. Tzirtzilakis, E. E. and Tanoudis, G. B. Numerical study of biomagnetic fluid flow over a stretching sheet with heat transfer. International Journal of Numerical Methods for Heat and Fluid Flow 13(7), 830–848 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Misra.

Additional information

Communicated by Zhe-wei ZHOU

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, J.C., Sinha, A. & Shit, G. Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. Appl. Math. Mech.-Engl. Ed. 31, 1405–1420 (2010). https://doi.org/10.1007/s10483-010-1371-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-1371-6

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation