Skip to main content
Log in

Formation of radially expanding liquid sheet by impinging two round jets

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A thin circular liquid sheet can be formed by impinging two identical round jets against each other. The liquid sheet expands to a certain critical radial distance and breaks. The unsteady process of the formation and breakup of the liquid sheet in the ambient gas is simulated numerically. Both liquid and gas are treated as incompressible Newtonian fluids. The flow considered is axisymmetric. The liquid-gas interface is modeled with a level set function. A finite difference scheme is used to solve the governing Navier-Stokes equations with physical boundary conditions. The numerical results show how a thin circular sheet can be formed and break at its circular edge in slow motion. The sheet continues to thin as it expands radially. Hence, the Weber number decreases radially. The Weber number is defined as ρu 2 h/σ, where ρ and σ are, respectively, the liquid density and the surface tension, and u and h are, respectively, the average velocity and the half sheet thickness at a local radial location in the liquid sheet. The numerical results show that the sheet indeed terminates at a radial location, where the Weber number reaches one as observed in experiments. The spatio-temporal linear theory predicts that the breakup is initiated by the sinuous mode at the critical Weber number We c=1, below which the absolute instability occurs. The other independent mode called the varicose mode grows more slowly than the sinuous mode according to the linear theory. However, our numerical results show that the varicose mode actually overtakes the sinuous mode during the nonlinear evolution, and is responsible for the final breakup. The linear theory predicts the nature of disturbance waves correctly only at the onset of the instability, but cannot predict the exact consequence of the instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savart, F. Memoire sur le choc d’une veine liquid lancee contre un plan circulaire. Ann. Chim. Phys. 54, 56–87 (1833)

    Google Scholar 

  2. Savart, F. Suit du memoire sur le choc d’une veine liquid lancee contre un plan circulaire. Ann. Chim. Phys. 54, 113–145 (1833)

    Google Scholar 

  3. Savart, F. Memoire sure le choc de deux veine liquids, animees de mouvemens directement opposes. Ann. Chim. Phys. 55, 257–310 (1833)

    Google Scholar 

  4. Chubb, D. L., Calfo, F. D., McConley, M. W., McMaster, M. S., and Afjeh, A. A. Geometry of thin liquid sheet flows. AIAA J. 32(6), 1325–1328 (1994)

    Article  Google Scholar 

  5. Soderberg, L. D. and Alfredsson, P. H. Experimental and theoretical stability investigations of plane liquid jets. Eur. J. Mech. B/Fluids 17(5), 689–737 (1998)

    Article  Google Scholar 

  6. Squire, H. B. Investigation of the instability of a moving liquid film. Br. J. Appl. Phys. 4, 167–169 (1953)

    Article  Google Scholar 

  7. Hagerty, W. W. and Shea, J. F. A study of the stability of plane fluid sheets. J. Appl. Mech. 22, 509–514 (1955)

    Google Scholar 

  8. Fraser, R. P., Eisenklam, P., Dombrowski, N., and Hasson, D. Drop formation from rapidly moving liquid sheets. AIChE J. 8(5), 672–680 (1962)

    Article  Google Scholar 

  9. Taylor, G. I. The dynamics of thin sheets of fluid. II. waves on fluid sheet. Proc. R. Soc. Lond., Ser. A 253, 296–312 (1959)

    Article  Google Scholar 

  10. Taylor, G. I. The dynamics of thin sheets of fluid. III. disintegration of fluid sheets. Proc. R. Soc. Lond., Ser. A 253, 313–321 (1959)

    Article  Google Scholar 

  11. Huang, J. C. P. The breakup of axisymmetric liquid sheets. J. Fluid Mech. 43, 305–319 (1970)

    Article  Google Scholar 

  12. Clanet, C. and Villermaux, E. Life of a smooth liquid sheet. J. Fluid Mech. 462, 307–340 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Villermaux, E. and Clanet, C. Life of a flapping liquid sheet. J. Fluid Mech. 462, 341–363 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Crapper, G. D., Dombrowski, N., and Pyott, G. A. D. Large amplitude Kelvin-Helmholtz waves on thin liquid sheets. Proc. R. Soc. Lond., Ser. A 342, 209–224 (1975)

    Article  Google Scholar 

  15. Clark, C. J. and Dombrowski, N. Aerodynamic instability and disintegration of inviscid liquid sheets. Proc. R. Soc. Lond., Ser. A 329, 467–478 (1972)

    Article  MATH  Google Scholar 

  16. Crapper, G. D., Dombrowski, N., and Jepson, W. P. Wave growth on thin sheets of non-Newtonian liquids. Proc. R. Soc. Lond., Ser. A 342, 225–236 (1975)

    Article  Google Scholar 

  17. Lin, S. P. and Jiang, W. Y. Absolute and convective instability of a radially expanding liquid sheet. Phys. Fluids 15(6), 1745–1754 (2003)

    Article  Google Scholar 

  18. Brackbill, J. U., Kothe, D. B., and Zemach, C. A continuum method for modeling surface tension. J. Comp. Phys. 100(2), 335–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Osher, S. and Sethian, J. A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sethian, J. A. Level Set Methods and Fast Marching Methods, Cambridge University Press, London (1999)

    MATH  Google Scholar 

  21. Sussman, M., Smereka, P., and Osher, S. A level set approach for computing solutions to incompressible 2-phase flow. J. Comp. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  22. Chorin, A. J. Numerical solution of the Navier-Stokes equations. Math. Comp. 22(104), 745–762 (1968)

    MATH  MathSciNet  Google Scholar 

  23. Temam, R. On an approximate solution of the Navier-Stokes equations by the method of fractional steps, part 1. Archiv. Ration. Mech. Anal. 32, 135–153 (1969)

    MATH  MathSciNet  Google Scholar 

  24. Fortin, M., Peyret, R., and Temam, R. Resolution numerique des equations de Navier-Stokes pour un fluide visqueux incompressible. J. Mech. 10(3), 357–390 (1971)

    MATH  MathSciNet  Google Scholar 

  25. Li, J. Cacul d’interface affine par morceaux (piecewise linear interface calculation). C. R. Acad. Sci. Paris, Ser. IIB 320, 391–396 (1995)

    MATH  Google Scholar 

  26. Jiang, G. S. and Shu, C. W. Efficient implementation of weighted ENO schemes. J. Comp. Phys. 126(1), 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-liang Wang  (王志亮).

Additional information

Contributed by Zhe-wei ZHOU

Project supported by the National Natural Science Foundation of China (Nos. 10702038 and 10772107), the National Science Foundation of USA (No. CTS-0138057), the Foundation of Science and Technology Commission of Shanghai Municipality (No. 09DZ1141502), and the Shanghai Leading Academic Discipline Project (No. Y0103)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Zl., Lin, S.P. & Zhou, Zw. Formation of radially expanding liquid sheet by impinging two round jets. Appl. Math. Mech.-Engl. Ed. 31, 937–946 (2010). https://doi.org/10.1007/s10483-010-1328-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-1328-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation