Skip to main content
Log in

Local projection stabilized finite element method for Navier-Stokes equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper extends the results of Matthies, Skrzypacz, and Tubiska for the Oseen problem to the Navier-Stokes problem. For the stationary incompressible Navier-Stokes equations, a local projection stabilized finite element scheme is proposed. The scheme overcomes convection domination and improves the restrictive inf-sup condition. It not only is a two-level approach but also is adaptive for pairs of spaces defined on the same mesh. Using the approximation and projection spaces defined on the same mesh, the scheme leads to much more compact stencils than other two-level approaches. On the same mesh, besides the class of local projection stabilization by enriching the approximation spaces, two new classes of local projection stabilization of the approximation spaces are derived, which do not need to be enriched by bubble functions. Based on a special interpolation, the stability and optimal prior error estimates are shown. Numerical results agree with some benchmark solutions and theoretical analysis very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franca, L. P. and Frey, S. L. Stabilized finite element methods: II. the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 99(2–3), 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Tobiska, L. and Verfürth, R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equation. SIAM Journal on Numerical Analysis 33(1), 107–127 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Li, J., He, Y. N., and Chen, Z. X. Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs. Computing 86(1), 37–51 (2009) DOI 10.1007/s00607-009-0064-5

    Article  MATH  MathSciNet  Google Scholar 

  4. He, Y. N. and Li, J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations. Applied Numerical Mathematics 58(10), 1503–1514 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, J., He, Y. N., and Xu, H. A multi-level stabilized finite element method for the stationary Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 196(4–6), 2852–2862 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, J., He, Y. N., and Chen, Z. X. A new stabilized FEM for the transient Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 197, 22–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Qin, Y. M., Feng, M. F., and Zhou, T. X. A new full discrete stabilized viscosity method for transient Navier-Stokes equations. Applied Mathematics and Mechanics (English Edition) 30(7), 839–852 (2009) DOI 10.1007/s10483-009-0704-z

    Article  MATH  MathSciNet  Google Scholar 

  8. Luo, Y. and Feng, M. F. Discontinous element pressure gradient stabilizations for the compressible Navier-Stokes equations based on local projections. Applied Mathematics and Mechanics (English Edition) 29(2), 171–183 (2008) DOI 10.1007/s10483-008-0205-z

    Article  MATH  MathSciNet  Google Scholar 

  9. Luo, K., Feng, M. F., and Wang, C. An accurate locking-free quadrilateral plate element (in Chinese). Journal of Sichuan University (Engeering Science Edition) 38(1), 44–48 (2006)

    Google Scholar 

  10. Becker, R. and Braack, M. A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Becker, R. and Braack, M. A two-level stabilization scheme for the Navier-Stokes equations. Numerical Mathematics and Advanced Applications (eds. Feistauer, M., Dolejší, V., Knobloch, P., and Najzar, K.), Springer-Verlag, Berlin Heidelberg, 123–130 (2003)

    Google Scholar 

  12. Braack, M. and Burman, E. Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM Journal on Numerical Analysis 43(6), 2544–2566 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Matthies, G., Skrzypacz, P., and Tobiska, L. A unified convergence analysis for local projection stabilizations applied to the Oseen problem. Mathematical Modelling and Numerical Analysis 41(4), 713–742 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Codina, R. and Blasco, J. Analysis of a pressure-stabilized finite element approximation of the stationary Navier-Stokes equations. Numerische Mathematik 87, 59–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Codina, R. and Blasco, J. A finite element formulation for the Stokes problem allowing equal velocity-ressure interpolation. Computer Methods in Applied Mechanics and Engineering 143, 373–391 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Codina, R. and Blasco, J. Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Computer Methods in Applied Mechanics and Engineering 182, 277–300 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Codina, R., Vázquez, M., and Zienkiewicz, O. C. A general algorithm for compressible and incompressible follow-Part III, the semiimplicit form. International Journal for Numerical Methods in Fluids 27, 13–32 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chacõn, T. A term by term stabilization algorithm for the finite element solution of incompressible flow problems. Numerische Mathematik 79, 283–319 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Franca, L. P. and Frey, S. L. Stabilized finite element methods: II. the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering 99, 209–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tobiska, L. and Lube, G. A modified streamline-diffusion method for solving the stationary Navier-Stokes equations. Numerische Mathematik 59, 13–29 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tobiska, L. and Verfürth, R. Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM Journal on Numerical Analysis 33, 107–127 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Girault, V. and Raviart, P. Finite Element Methods for the Navier-Stokes Equations, Springer-Verlag, Berlin/Heidelberg (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-fu Feng  (冯民富).

Additional information

Communicated by Xing-ming GUO

Project supported by the National Natural Science Foundation of China (No. 10872085), the Sichuan Science and Technology Project (No. 05GG006-006-2), and the Youth Science Foundation of Neijiang Normal University (No. 09NJZ-6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Ym., Feng, Mf., Luo, K. et al. Local projection stabilized finite element method for Navier-Stokes equations. Appl. Math. Mech.-Engl. Ed. 31, 651–664 (2010). https://doi.org/10.1007/s10483-010-0513-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-0513-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation