Advertisement

Applied Mathematics and Mechanics

, Volume 31, Issue 5, pp 623–634 | Cite as

Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials

  • Arezki TouzalineEmail author
Article

Abstract

A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account. Evolution of the bonding field is described by a first-order differential equation. The materials behavior is modelled with a nonlinear viscoelastic constitutive law. A variational formulation of the mechanical problem is derived, and the existence and uniqueness of the weak solution can be proven if the coefficient of friction is sufficiently small. The proof is based on arguments of time-dependent variational inequalities, differential equations, and the Banach fixed-point theorem.

Key words

viscoelastic materials adhesion nonlocal friction fixed point weak solution 

Chinese Library Classification

O343.3 

2000 Mathematics Subject Classification

47J20 49J40 74M10 74M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Duvaut, G. and Lions, J. L. Les Inéquations en Mécanique et en Physique, Dunod, Paris (1972)zbMATHGoogle Scholar
  2. [2]
    Sofonea, M., Han, W., and Shillor, M. Analysis and approximations of contact problems with adhesion or damage. Pure and Applied Mathematics 276, Chapman & Hall/CRC Press, Boca Raton, Florida (2006)Google Scholar
  3. [3]
    Awbi, B. Analyse Variationnelle de Quelques Problèmes Viscoélastiques et Viscoplastiques Avec Frottement, Ph. D. disserdation, Université de Perpigan (2001)Google Scholar
  4. [4]
    Chau, O., Fernandez, J. R., Shillor, M., and Sofonea, M. Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. Journal of Computational and Applied Mathematics 159(2), 431–465 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Chau, O., Shillor, M., and Sofonea, M. Dynamic frictionless contact with adhesion. Zeitschrift für Angewandte Mathematik und Physik, ZAMP 55(1), 32–47 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Fernandez, J. R., Shillor, M., and Sofonea, M. Analysis and numerical simulations of a dynamic contact problem with adhesion. Mathematical and Computer Modelling 37, 1317–1333 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Sofonea, M. and Hoarau-Mantel, T. V. Elastic frictionless contact problems with adhesion. Advances in Mathematical Sciences and Applications 15(1), 49–68 (2005)zbMATHMathSciNetGoogle Scholar
  8. [8]
    Cangémi, L. Frottement et Adhérence: Modèle, Traitement Numérique et Application à l’interface Fibre/Matrice, Ph. D. disserdation, Université de la Méditerranée, Marseille, France (1997)Google Scholar
  9. [9]
    Frémond, M. Adhérence des solides. Journal of Mécanique Théorique et Appliquée 6, 383–407 (1987)zbMATHGoogle Scholar
  10. [10]
    Frémond, M. Equilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris, Ser. II 295, 913–916 (1982)Google Scholar
  11. [11]
    Raous, M., Cangémi, L., and Cocu, M. A consistent model couplingadhesion, friction, and unilateral contact. Computer Methods in Applied Mechanics and Engineering 177, 383–399 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Rojek, J. and Telega, J. J. Contact problems with friction, adhesion and wear in orthopeadic biomechanics. I: general developements. Journal of Theoretical and Applied Mechanics 39, 655–677 (2001)zbMATHGoogle Scholar
  13. [13]
    Shillor, M., Sofonea, M., and Telega, J. J. Models and variational analysis of quasistatic contact. Lecture Notes in Physics, Vol. 655, Springer, Berlin (2004)Google Scholar
  14. [14]
    Sofonea, M., Arhab, R., and Tarraf, R. Analysis of electroelastic frictionless contact problems with adhesion. Journal of Applied Mathematics, Article ID 64217, 1–25 (2006) DOI 10.1155/JAM/2006/64217Google Scholar
  15. [15]
    Nassar, S. A., Andrews, T., Kruk, S., and Shillor, M. Modelling and simulations of a bonded rod. Mathematical and Computer Modelling 42, 553–572 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Frémond, M. Non-smooth Thermomechanics, Springer, Berlin (2002)zbMATHGoogle Scholar
  17. [17]
    Brezis, H. Equations et inéquations non linéaires dans les espaces vectoriels en dualité. Annales de l’institut Fourier 18(1), 115–175 (1968)zbMATHMathSciNetGoogle Scholar
  18. [18]
    Cocou, M. and Rocca, R. Existence results for unilateral quasistatic contact problems with friction and adhesion. Modélisation Mathématique et Analyse Numérique 34, 981–1001 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Shanghai University and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Laboratoire de Systèmes Dynamiques, Faculté de MathématiquesUniversité des Sciences et de la Technologie Houari BoumedieneBab-EzzouarAlgérie

Personalised recommendations