Advertisement

Applied Mathematics and Mechanics

, Volume 31, Issue 1, pp 125–134 | Cite as

A 17-node quadrilateral spline finite element using the triangular area coordinates

  • Juan Chen (陈娟)Email author
  • Chong-jun Li (李崇君)
  • Wan-ji Chen (陈万吉)
Article

Abstract

Isoparametric quadrilateral elements are widely used in the finite element method. However, they have a disadvantage of accuracy loss when elements are distorted. Spline functions have properties of simpleness and conformality. A 17-node quadrilateral element has been developed using the bivariate quartic spline interpolation basis and the triangular area coordinates, which can exactly model the quartic displacement fields. Some appropriate examples are employed to illustrate that the element possesses high precision and is insensitive to mesh distortions.

Key words

17-node quadrilateral element bivariate spline interpolation basis triangular area coordinates B-net method fourth-order completeness 

Chinese Library Classification

O241 O343 

2000 Mathematics Subject Classification

65D07 74S05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zienkiewicz, O. C. and Taylor, R. L. The Finite Element Method, 5th Ed., Elsevier Pte Ltd., Singapore (2005)zbMATHGoogle Scholar
  2. [2]
    Lee, N. S. and Bathe, K. J. Effects of element distortion on the performance of isoparametric elements. Int. J. Numer. Methods Engrg. 36(20), 3553–3576 (1993)zbMATHCrossRefGoogle Scholar
  3. [3]
    Long, Y. Q., Li, J. X., Long, Z. F., and Cen, S. Area coordinates used in quadrilateral elements. Commun. Numer. Methods Engrg. 15(8), 533–545 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Cen, S., Chen, X. M., and Fu, X. R. Quadrilateral membrane element family formulated by the quadrilateral area coordinate method. Comput. Methods Appl. Mech. Engrg. 196(41–44), 4337–4353 (2007)zbMATHCrossRefGoogle Scholar
  5. [5]
    Li, Y. D. and Chen, W. J. Refined nonconforming 8-node plane elements. Chinese J. Comput. Mech. 14(3), 276–285 (1997)Google Scholar
  6. [6]
    Li, C. J. and Wang, R. H. A new 8-node quadrilateral spline finite element. J. Comput. Appl. Math. 195(1–2), 54–65 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Chen, J., Li, C. J., and Chen, W. J. Area coordinates and B-net method for quadrilateral spline elements (in Chinese). Chinese J. Theory Appl. Mech., in press.Google Scholar
  8. [8]
    Chen, J., Li, C. J., and Chen, W. J. A new method of quadrilateral elements by area coordinates interpolation (in Chinese). Engineering Mechanics, in press.Google Scholar
  9. [9]
    Rathod, H. T. and Kilari, S. General complete Lagrange family for the cube in finite element interpolations. Comput. Methods Appl. Mech. Engrg. 181(1–3), 295–344 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Ho, S. P. and Yeh, Y. L. The use of 2D enriched elements with bubble functions for finite element analysis. Computers and Structures 84(29–30), 2081–209 (2006)CrossRefGoogle Scholar
  11. [11]
    Wang, R. H. The structural characterization and interpolation for multivariate splines (in Chinese). Acta Math. Sinica 18(2), 91–106 (1975)zbMATHMathSciNetGoogle Scholar
  12. [12]
    Wang, R. H. Multivariate Spline Functions and Their Applications, Science Press/Kluwer Academic Publishers, Beijing/New York/Dordrecht/Boston/London (2001)zbMATHGoogle Scholar
  13. [13]
    Farin, G. Triangular Bernstein-Bézier patches. Computer Aided Geometric Design 3(2), 83–127 (1986)CrossRefMathSciNetGoogle Scholar

Copyright information

© Shanghai University and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Juan Chen (陈娟)
    • 1
    Email author
  • Chong-jun Li (李崇君)
    • 1
  • Wan-ji Chen (陈万吉)
    • 2
    • 3
  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianP. R. China
  2. 2.State Key Laboratory for Structural Analysis of Industrial EquipmentDalian University of TechnologyDalianP. R. China
  3. 3.Institute for Structural Analysis of AerocraftShenyang Institute of Aeronautical EngineeringShenyangP. R. China

Personalised recommendations