Advertisement

Applied Mathematics and Mechanics

, Volume 31, Issue 1, pp 21–26 | Cite as

Stability of a cubic functional equation in intuitionistic random normed spaces

  • Shi-sheng Zhang (张石生)
  • John Michael Rassias
  • Reza SaadatiEmail author
Article

Abstract

In this paper, the stability of a cubic functional equation in the setting of intuitionistic random normed spaces is proved. We first introduce the notation of intuitionistic random normed spaces. Then, by virtue of this notation, we study the stability of a cubic functional equation in the setting of these spaces under arbitrary triangle norms. Furthermore, we present the interdisciplinary relation among the theory of random spaces, the theory of intuitionistic spaces, and the theory of functional equations.

Key words

stability cubic functional equation random normed space intuitionistic random normed spaces 

Chinese Library Classification

O177.91 

2000 Mathematics Subject Classification

46S40 39B82 54E40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ulam, S. M. Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York (1964)zbMATHGoogle Scholar
  2. [2]
    Hyers, D. H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA. 27(4), 222–224 (1941)CrossRefMathSciNetGoogle Scholar
  3. [3]
    Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Rassias, T. M. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72(2), 297–300 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Baak, C. and Moslehian, M. S. On the stability of J*-homomorphisms. Nonlinear Anal. 63(11), 42–48 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Chudziak, J. and Tabor, J. Generalized Pexider equation on a restricted domain. J. Math. Psychology 52(6), 389–392 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, New Jersey (2002)zbMATHGoogle Scholar
  8. [8]
    Hyers, D. H., Isac, G., and Rassias, T. M. Stability of Functional Equations in Several Variables, Birkhäuser, Basel (1998)zbMATHGoogle Scholar
  9. [9]
    Jung, S. M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor (2001)zbMATHGoogle Scholar
  10. [10]
    Rassias, T. M. On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62(1), 23–130 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Rassias, T. M. Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London (2003)zbMATHGoogle Scholar
  12. [12]
    Jun, K. W. and Kim, H. M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 274(2), 867–878 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Jun, K. W., Kim, H. M., and Chang, I. S. On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J. Comput. Anal. Appl. 7(1), 21–33 (2005)zbMATHMathSciNetGoogle Scholar
  14. [14]
    Mirmostafaee, M., Mirzavaziri, M., and Moslehian, M. S. Fuzzy stability of the Jensen functional equation. Fuzzy Sets and Systems 159(6), 730–738 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Mirzavaziri, M. and Moslehian, M. S. A fixed point approach to stability of a quadratic equation. Bull. Braz. Math. Soc. 37(3), 361–376 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Alsina, C. On the stability of a functional equation arising in probabilistic normed spaces. General Inequalities 5, 263–271 (1987)MathSciNetGoogle Scholar
  17. [17]
    Mihetţ, D. and Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 343(1), 567–572 (2008)MathSciNetGoogle Scholar
  18. [18]
    Mihetţ, D., Saadati, R., and Vaezpour, S. M. The stability of the quadratic functional equation in random normed spaces. Acta Appl. Math. (2009) DOI 10.1007/s10440-009-9476-7Google Scholar
  19. [19]
    Mihetţ, D., Saadati R., and Vaezpour, S. M. The stability of an additive functional equation in Menger probabilistic φ-normed spaces. Math. Slovak, in press.Google Scholar
  20. [20]
    Baktash, E., Cho, Y. J., Jalili, M., Saadati, R., and Vaezpour, S. M. On the stability of cubic mappings and quadratic mappings in random normed spaces. J. Inequal. Appl., Article ID 902187, 11 pages (2008)Google Scholar
  21. [21]
    Saadati, R., Vaezpour, S. M., and Cho, Y. J. A note on the “On the stability of cubic mappings and quadratic mappings in random normed spaces”. J. Inequal. Appl., Article ID 214530, 6 pages (2009)Google Scholar
  22. [22]
    Chang, S. S., Cho, Y. J., and Kang, S. M. Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Inc., New York (2001)zbMATHGoogle Scholar
  23. [23]
    Hadžić, O. and Pap, E. Fixed Point Theory in PM-Spaces, Kluwer Academic Publishers, Amsterdam (2001)Google Scholar
  24. [24]
    Kutukcu, S., Tuna, A., and Yakut, A. T. Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations. Appl. Math. Mech. -Engl. Ed. 28(6), 799–809 (2007) DOI 10.1007/s10483-007-0610-zzbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Schweizer, B. and Sklar, A. Probabilistic Metric Spaces, Elsevier, North Holand (1983)zbMATHGoogle Scholar
  26. [26]
    Šerstnev, A. N. On the notion of a random normed space (in Russian). Dokl. Akad. Nauk SSSR 149, 280–283 (1963)MathSciNetGoogle Scholar
  27. [27]
    Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Deschrijver, G. and Kerre, E. E. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Shanghai University and Springer Berlin Heidelberg 2010

Authors and Affiliations

  • Shi-sheng Zhang (张石生)
    • 1
  • John Michael Rassias
    • 2
  • Reza Saadati
    • 3
    Email author
  1. 1.Department of MathematicsYibin UniversityYibinP. R. China
  2. 2.Section of Mathematics and Informatics, Pedagogical DepartmentNational and Capodistrian University of AthensAthensGreece
  3. 3.Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations