Skip to main content
Log in

Plane strain consolidation of soil layer with anisotropic permeability

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper presents an alternative analytical technique to study a plane strain consolidation of a poroelastic soil by taking into account the anisotropy of permeability. From the governing equations of a saturated poroelastic soil, the relationship of basic variables for a point of a soil layer is established between the ground surface (z = 0) and the depth z in the Laplace-Fourier transform domain. Combined with the boundary conditions, an exact solution is derived for plane strain Biot’s consolidation of a finite soil layer with anisotropic permeability in the transform domain. Numerical inversions of the Laplace transform and the Fourier transform are adopted to obtain the actual solution in the physical domain. Numerical results of plane strain Biot’s consolidation for a single soil layer show that the anisotropic of permeability has a great influence on the consolidation behavior of the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biot, M. A. General theory of three-dimensional consolidation. Journal of Applied Physics 12(2), 155–164 (1941)

    Article  Google Scholar 

  2. McNamee, J. and Gibson, R. E. Displacement functions and linear transforms applied to diffusion through porous elastic media. Quarterly Journal of Mechanics and Applied Mathematics 13(1), 98–111 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  3. McNamee, J. and Gibson, R. E. Plane strain and axially symmetric problem of the consolidation of a semi-infinite clay stratum. Quarterly Journal of Mechanics and Applied Mathematics 13(2), 210–227 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gibson, R. E., Schiffman, R. L., and Pu, S. L. Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. Quarterly Journal of Mechanics and Applied Mathematics 23(4), 505–520 (1970)

    Article  MATH  Google Scholar 

  5. Schiffman, R. L. and Fungaroli, A. A. Consolidation due to tangential loads. Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, Montreal, Canada, 188–192 (1965)

    Google Scholar 

  6. Booker, J. R. The consolidation of a finite layer subject to surface loading. International Journal of Solids and Structures 10(9), 1053–1065 (1974)

    Article  MathSciNet  Google Scholar 

  7. Booker, J. R. and Small, J. C. Finite layer analysis of consolidation I. International Journal for Numerical and Analytical Methods in Geomechanics 6(2), 151–171 (1982)

    Article  MATH  Google Scholar 

  8. Booker, J. R. and Small, J. C. Finite layer analysis of consolidation II. International Journal for Numerical and Analytical Methods in Geomechanics 6(2), 173–194 (1982)

    Article  MATH  Google Scholar 

  9. Booker, J. R. and Small, J. C. A method of computing the consolidation behavior of layered soils using direct numerical inversion of Laplace transforms. International Journal for Numerical and Analytical Methods in Geomechanics 11(4), 363–380 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vardoulakis, I. and Harnpattanapanich, T. Numerical Laplace-Fourier transform inversion technique for layered-soil consolidation problems: I. fundamental solutions and validation. International Journal for Numerical and Analytical Methods in Geomechanics 10(4), 347–365 (1986)

    Article  MATH  Google Scholar 

  11. Yue, Z. Q., Selvadurai, A. P. S., and Law, K. T. Excess pore water pressure in a poroelastic seabed saturated with a compressible fluid. Canadian Geotechnical Journal 31(6), 989–1003 (1994)

    Article  Google Scholar 

  12. Senjuntichai, T. and Rajapakse, R. K. N. D. Exact stiffness method for quasi-statics of a multilayered poroelastic medium. International Journal of Solids and Structures 32(11), 1535–1553 (1995)

    Article  MATH  Google Scholar 

  13. Pan, E. Green’s functions in layered poroelastic half-space. International Journal for Numerical and Analytical Methods in Geomechanics 23(13), 1631–1653 (1999)

    Article  MATH  Google Scholar 

  14. Wang, J. G. and Fang, S. S. The state vector solution of axisymmetric Biot’s consolidation problems for multilayered poroelastic media. Mechanics Research Communications 28(6), 671–677 (2001)

    Article  MATH  Google Scholar 

  15. Wang, J. G. and Fang, S. S. State space solution of non-axisymmetric Biot consolidation problems for multilayered poroelastic media. International Journal of Engineering Science 41(15), 1799–1813 (2003)

    Article  Google Scholar 

  16. Ai, Z. Y., Cheng, Z. Y., and Han, J. State space solution to three-dimensional consolidation of multi-layered soils. International Journal of Engineering Science 46(5), 486–498 (2008)

    Article  Google Scholar 

  17. Ai, Z. Y., Wu, C., and Han, J. Transfer matrix solutions for three-dimensional consolidation of a multi-layered soil with compressible constituents. International Journal of Engineering Science 46(11), 1111–1119 (2008)

    Article  MathSciNet  Google Scholar 

  18. Ai, Z. Y. and Wang, Q. S. A new analytical solution for axisymmetric Biot’s consolidation of a finite soil layer. Applied Mathematics and Mechanics (English Edition) 29(12), 1617–1624 (2008) DOI: 10.1007/s10483-008-1209-9

    Article  MATH  Google Scholar 

  19. Chen, G. J. Consolidation of multilayered half space with anisotropic permeability and compressible constituents. International Journal of Solids and Structures 41(16–17), 4567–4586 (2004)

    Article  MATH  Google Scholar 

  20. Mei, G. X. et al. Consolidation analysis of a cross-anisotropic homogeneous elastic soil using a finite layer numerical method. International Journal for Numerical and Analytical Methods in Geomechanics 28(2), 111–129 (2004)

    Article  MATH  Google Scholar 

  21. Talbot, A. The accurate numerical inversion of Laplace transforms. Journal of Institute of Mathematics and Its Application 23(1), 97–120 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sneddon, I. N. The Use of Integral Transform, McGraw-Hill, New York (1972)

    Google Scholar 

  23. Ai, Z. Y., Yue, Z. Q., Tham, L. G., and Yang, M. Extended Sneddon and Muki solutions for multilayered elastic materials. International Journal of Engineering Science 40(13), 1453–1483 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-yong Ai  (艾智勇).

Additional information

Communicated by Xing-ming GUO

Project supported by the National Natural Science Foundation of China (No. 50578121)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, Zy., Wu, C. Plane strain consolidation of soil layer with anisotropic permeability. Appl. Math. Mech.-Engl. Ed. 30, 1437–1444 (2009). https://doi.org/10.1007/s10483-009-1109-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-1109-7

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation