Applied Mathematics and Mechanics

, Volume 30, Issue 10, pp 1271–1282 | Cite as

Topographic effects on polar low and tropical cyclone development in simple theoretical model

  • Zi-liang Li (李子良)Email author
  • Gang Fu (傅刚)
  • Jing-tian Guo (郭敬天)
  • Yi-hong Duan (端义宏)
  • Mei-gen Zhang (张美根)


The polar low and tropical cyclone type vortices over topography are assumed to be the axisymmetrical and thermal-wind balanced systems, which are solved as an initial value problem of a linearized vortex equation set in cylindrical coordinates. The roles of the sensible and latent heating, friction, and topography in the structure and intensification of the polar low and tropical cyclone type vortices are analyzed. The radial velocity, vertical velocity, azimuthal velocity, and the unstable growth rate including the topography effects are obtained. It is shown that the interaction between the flow and the topography plays a significant role in the structure and intensification of the polar low and tropical cyclone system. The analysis of the topography term indicates that, in the up-slope side of the mountain, the radial inflow and the vertical ascent forced by the mountain can intensify the polar low and tropical cyclone type vortex and increase the unstable growth rate. However, in the lee side of the mountain, the radial inflow and the vertical descent forced by the mountain can weaken the polar low and tropical cyclone type vortex and decrease the unstable growth rate of the polar low and tropical cyclone system. In addition, the evolutionary process and the spatial structure of the polar low observed over the Japan Sea on 19 December 2003 are investigated with the observational data to verify this theoretical result.

Key words

topography analytical solutions polar low tropical cyclone 

Chinese Library Classification


2000 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Harley, D. G. Frontal contour analysis of a “polar low”. Meteorol. Mag. 89, 146–147 (1960)Google Scholar
  2. [2]
    Fu, G., Niino, H., Kimura, R., and Kato, T. A polar low over the Japan Sea on 21 January 1997, part I: observational analysis. Monthly Weather Review 132, 1537–1551 (2004)CrossRefGoogle Scholar
  3. [3]
    Rasmussen, E. A. and Turner, J. Polar Lows, Mesoscale Weather Systems in the Polar Region, Cambridge University Press, Cambridge (2003)Google Scholar
  4. [4]
    Mansfield, D. A. Polar lows: the development of baroclinic disturbances in cold air outbreaks. Q. J. R. Meteorol. Soc. 100(426), 541–554 (1974)CrossRefGoogle Scholar
  5. [5]
    Rasmussen, E. The polar low as an extratropical CISK-disturbance. Q. J. R. Meteorol. Soc. 105(445), 531–549 (1979)CrossRefGoogle Scholar
  6. [6]
    Shapiro, M. A., Fedor, L. S., and Hampel, T. Research aircraft measurements of a polar low over the Norwegian Sea. Tellus A 39A, 272–306 (1987)Google Scholar
  7. [7]
    Ninomiya, K. Polar/comma-cloud lows over the Japan Sea and the northwestern Pacific in winter. Journal of the Meteorological Society of Japan 67(1), 83–97 (1989)Google Scholar
  8. [8]
    Tsuboki, K. and Wakahama, G. Mesoscale cyclogenesis in winter monsoon air streams: quasigeostrophic baroclinic instability as a mechanism of the cyclogenesis off the west coast of Hokkaido Island, Japan. Journal of the Meteorological Society of Japan 70(1), 77–93 (1992)Google Scholar
  9. [9]
    Lee, T. Y., Park, Y. Y., and Lin, Y. L. A numerical modeling study of mesoscale cyclogenesis to the east of Korean Peninsula. Monthly Weather Review 126(9), 2305–2329 (1998)CrossRefGoogle Scholar
  10. [10]
    Fu, G. Polar Lows: Intense Cyclones in Winter, China Meteorology Press, Beijing, 218 (2001)Google Scholar
  11. [11]
    Yanase, W., Niino, H., and Saito, K. High-resolution numerical simulation of a polar low. Geophys. Res. Lett. 29(14), 1658(2002) DOI: 10.1029/2002GL014736CrossRefGoogle Scholar
  12. [12]
    Wilhelmsen, K. Climatological study of gale-producing polar lows near Norway. Tellus A 37A, 451–459 (1985)CrossRefGoogle Scholar
  13. [13]
    Eliassen, A. Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvegica 5(2), 19–60 (1951)MathSciNetGoogle Scholar
  14. [14]
    Chaney, J. G. and Eliassen, A. On the growth of the hurricane depression. J. Atmos. Sci. 21(1), 68–75 (1964)CrossRefGoogle Scholar
  15. [15]
    Ooyama, K. A dynamic model for the study of tropical cyclone development. Geophys. J. Int. 4, 187–198 (1964)Google Scholar
  16. [16]
    Craig, G. C. and Cray, S. L. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 53(23), 3528–3540 (1996)CrossRefGoogle Scholar
  17. [17]
    Gray, S. L. and Craig, G. C. A simple theoretical model for the intensification of tropical cyclones and polar lows. Q. J. R. Meteorol. Soc. 124(547), 919–947 (1998)CrossRefGoogle Scholar
  18. [18]
    Emanuel, K. A. An air-sea interaction theory for tropical cyclones, part I: steady state maintenance. J. Atmos. Sci. 43(6), 585–604 (1986)CrossRefGoogle Scholar
  19. [19]
    Li, Z. L. Theory and numerical simulation of atmospheric ship waves generated by 3-D layered flow over double hills (in Chinese). Chinese Journal of Geophysics 50(1), 34–42 (2007)Google Scholar
  20. [20]
    Li, Z. L. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere. J. Phys. A: Math. Theor. 41(14), 145206 (2008)CrossRefGoogle Scholar
  21. [21]
    Li, Z. L., Fu, G., and Chen, J. Periodic structures of atmospheric internal gravity wave under the influence of air-sea interaction. Chaos Solitons and Fractals 40(2), 530–537 (2009)CrossRefMathSciNetGoogle Scholar
  22. [22]
    Emanuel, K. A., Neelin, J. D., and Bretherton, C. S. On large scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120(519), 1111–1144 (1994)CrossRefGoogle Scholar
  23. [23]
    Guo, J. T., Fu., G., Li, Z. L., Shao, L. M, Duan, Y. H., and Wang, J. G. Analyses and numerical modeling of a polar low over the Japan Sea on 19 December 2003. Atmospheric Research 85(3–4), 395–412 (2007)CrossRefGoogle Scholar
  24. [24]
    Reale, O. and Atlas, R. Tropical cyclone-like vortices in the extratropics: observational evidence and synoptic analysis. Weather and Forecasting 63(2), 7–34 (2001)CrossRefGoogle Scholar
  25. [25]
    Martin, R. and Moore, G. W. K. Transition of a synoptic system to a polar low via interaction with the orography of Greenland. Tellus A 58A, 236–253 (2006)CrossRefGoogle Scholar
  26. [26]
    Moore, G. W. K., Reader, M. C., York, J., and Sathiyamoorthy, S. Polar lows in the Labrador Sea: a case study. Tellus A 48A, 17–40 (1996)CrossRefGoogle Scholar

Copyright information

© Shanghai University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Zi-liang Li (李子良)
    • 1
    • 2
    • 3
    Email author
  • Gang Fu (傅刚)
    • 1
    • 2
    • 4
  • Jing-tian Guo (郭敬天)
    • 1
    • 6
  • Yi-hong Duan (端义宏)
    • 2
    • 5
  • Mei-gen Zhang (张美根)
    • 4
  1. 1.Department of Marine MeteorologyOcean University of ChinaQingdaoP. R. China
  2. 2.Shanghai Typhoon InstituteShanghaiP. R. China
  3. 3.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of OceanographyState Oceanic AdministrationHangzhouP. R. China
  4. 4.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingP. R. China
  5. 5.National Meteorological CenterChina Meteorological AdministrationBeijingP.R. China
  6. 6.North China Sea Marine Forecasting Center of State Oceanic AdministrationQingdaoP. R. China

Personalised recommendations