Skip to main content
Log in

Topographic effects on polar low and tropical cyclone development in simple theoretical model

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The polar low and tropical cyclone type vortices over topography are assumed to be the axisymmetrical and thermal-wind balanced systems, which are solved as an initial value problem of a linearized vortex equation set in cylindrical coordinates. The roles of the sensible and latent heating, friction, and topography in the structure and intensification of the polar low and tropical cyclone type vortices are analyzed. The radial velocity, vertical velocity, azimuthal velocity, and the unstable growth rate including the topography effects are obtained. It is shown that the interaction between the flow and the topography plays a significant role in the structure and intensification of the polar low and tropical cyclone system. The analysis of the topography term indicates that, in the up-slope side of the mountain, the radial inflow and the vertical ascent forced by the mountain can intensify the polar low and tropical cyclone type vortex and increase the unstable growth rate. However, in the lee side of the mountain, the radial inflow and the vertical descent forced by the mountain can weaken the polar low and tropical cyclone type vortex and decrease the unstable growth rate of the polar low and tropical cyclone system. In addition, the evolutionary process and the spatial structure of the polar low observed over the Japan Sea on 19 December 2003 are investigated with the observational data to verify this theoretical result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Harley, D. G. Frontal contour analysis of a “polar low”. Meteorol. Mag. 89, 146–147 (1960)

    Google Scholar 

  2. Fu, G., Niino, H., Kimura, R., and Kato, T. A polar low over the Japan Sea on 21 January 1997, part I: observational analysis. Monthly Weather Review 132, 1537–1551 (2004)

    Article  Google Scholar 

  3. Rasmussen, E. A. and Turner, J. Polar Lows, Mesoscale Weather Systems in the Polar Region, Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Mansfield, D. A. Polar lows: the development of baroclinic disturbances in cold air outbreaks. Q. J. R. Meteorol. Soc. 100(426), 541–554 (1974)

    Article  Google Scholar 

  5. Rasmussen, E. The polar low as an extratropical CISK-disturbance. Q. J. R. Meteorol. Soc. 105(445), 531–549 (1979)

    Article  Google Scholar 

  6. Shapiro, M. A., Fedor, L. S., and Hampel, T. Research aircraft measurements of a polar low over the Norwegian Sea. Tellus A 39A, 272–306 (1987)

    Google Scholar 

  7. Ninomiya, K. Polar/comma-cloud lows over the Japan Sea and the northwestern Pacific in winter. Journal of the Meteorological Society of Japan 67(1), 83–97 (1989)

    Google Scholar 

  8. Tsuboki, K. and Wakahama, G. Mesoscale cyclogenesis in winter monsoon air streams: quasigeostrophic baroclinic instability as a mechanism of the cyclogenesis off the west coast of Hokkaido Island, Japan. Journal of the Meteorological Society of Japan 70(1), 77–93 (1992)

    Google Scholar 

  9. Lee, T. Y., Park, Y. Y., and Lin, Y. L. A numerical modeling study of mesoscale cyclogenesis to the east of Korean Peninsula. Monthly Weather Review 126(9), 2305–2329 (1998)

    Article  Google Scholar 

  10. Fu, G. Polar Lows: Intense Cyclones in Winter, China Meteorology Press, Beijing, 218 (2001)

    Google Scholar 

  11. Yanase, W., Niino, H., and Saito, K. High-resolution numerical simulation of a polar low. Geophys. Res. Lett. 29(14), 1658(2002) DOI: 10.1029/2002GL014736

    Article  Google Scholar 

  12. Wilhelmsen, K. Climatological study of gale-producing polar lows near Norway. Tellus A 37A, 451–459 (1985)

    Article  Google Scholar 

  13. Eliassen, A. Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophysica Norvegica 5(2), 19–60 (1951)

    MathSciNet  Google Scholar 

  14. Chaney, J. G. and Eliassen, A. On the growth of the hurricane depression. J. Atmos. Sci. 21(1), 68–75 (1964)

    Article  Google Scholar 

  15. Ooyama, K. A dynamic model for the study of tropical cyclone development. Geophys. J. Int. 4, 187–198 (1964)

    Google Scholar 

  16. Craig, G. C. and Cray, S. L. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci. 53(23), 3528–3540 (1996)

    Article  Google Scholar 

  17. Gray, S. L. and Craig, G. C. A simple theoretical model for the intensification of tropical cyclones and polar lows. Q. J. R. Meteorol. Soc. 124(547), 919–947 (1998)

    Article  Google Scholar 

  18. Emanuel, K. A. An air-sea interaction theory for tropical cyclones, part I: steady state maintenance. J. Atmos. Sci. 43(6), 585–604 (1986)

    Article  Google Scholar 

  19. Li, Z. L. Theory and numerical simulation of atmospheric ship waves generated by 3-D layered flow over double hills (in Chinese). Chinese Journal of Geophysics 50(1), 34–42 (2007)

    Google Scholar 

  20. Li, Z. L. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere. J. Phys. A: Math. Theor. 41(14), 145206 (2008)

    Article  Google Scholar 

  21. Li, Z. L., Fu, G., and Chen, J. Periodic structures of atmospheric internal gravity wave under the influence of air-sea interaction. Chaos Solitons and Fractals 40(2), 530–537 (2009)

    Article  MathSciNet  Google Scholar 

  22. Emanuel, K. A., Neelin, J. D., and Bretherton, C. S. On large scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120(519), 1111–1144 (1994)

    Article  Google Scholar 

  23. Guo, J. T., Fu., G., Li, Z. L., Shao, L. M, Duan, Y. H., and Wang, J. G. Analyses and numerical modeling of a polar low over the Japan Sea on 19 December 2003. Atmospheric Research 85(3–4), 395–412 (2007)

    Article  Google Scholar 

  24. Reale, O. and Atlas, R. Tropical cyclone-like vortices in the extratropics: observational evidence and synoptic analysis. Weather and Forecasting 63(2), 7–34 (2001)

    Article  Google Scholar 

  25. Martin, R. and Moore, G. W. K. Transition of a synoptic system to a polar low via interaction with the orography of Greenland. Tellus A 58A, 236–253 (2006)

    Article  Google Scholar 

  26. Moore, G. W. K., Reader, M. C., York, J., and Sathiyamoorthy, S. Polar lows in the Labrador Sea: a case study. Tellus A 48A, 17–40 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-liang Li  (李子良).

Additional information

Communicated by Zhe-wei ZHOU

Project supported by the National Natural Science Foundation of China (Nos. 40775069 and 40675060), the Science Foundation of Shanghai Typhoon Institute (No. 2006STB03), the Science Foundation of State Key Laboratory of Satellite Ocean Environment Dynamics (No. SOED0904), the Ministry of Science and Technology of the People’s Republic of China (Nos. 2009CB421504 and 2006AA09Z151), the China Meteorological Administration (No. GYHY200706031), and the State Oceanic Administration (No. 908020310)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Zl., Fu, G., Guo, Jt. et al. Topographic effects on polar low and tropical cyclone development in simple theoretical model. Appl. Math. Mech.-Engl. Ed. 30, 1271–1282 (2009). https://doi.org/10.1007/s10483-009-1007-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-1007-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation