Advertisement

Series solutions for the stagnation flow of a second-grade fluid over a shrinking sheet

  • S. NadeemEmail author
  • Anwar Hussain
  • M. Y. Malik
  • T. Hayat
Article

Abstract

This study derives the analytic solutions of boundary layer flows bounded by a shrinking sheet. With the similarity transformations, the partial differential equations are reduced into the ordinary differential equations which are then solved by the homotopy analysis method (HAM). Two-dimensional and axisymmetric shrinking flow cases are discussed.

Key words

stagnation flow second-grade fluid shrinking sheet 

Chinese Library Classification

O373 

2000 Mathematics Subject Classification

76A05 

References

  1. [1]
    Sajid, M., Ahmad, I., Hayat, T., and Ayub, M. Unsteady flow and heat transfer of a second grade fluid over a stretching sheet. Comm. Nonl. Sci. Num. Sim. 14(1), 96–108(2009)CrossRefMathSciNetGoogle Scholar
  2. [2]
    Cortell, R. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. Nonlin. Mech. 41(1), 78–85 (2006)zbMATHCrossRefGoogle Scholar
  3. [3]
    Cortell, R. Effects of viscous dissipation and work done by deformation on the MHD flow and heat transfer of a viscoelastic fluid over a stretching sheet. Phys. Lett. A 357(4–5), 298–305 (2006)zbMATHCrossRefGoogle Scholar
  4. [4]
    Hayat, T. and Sajid, M. Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet. Int. J. Heat Mass Tran. 50(1–2), 75–84 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Hayat, T., Saif, S., and Abbas, Z. The influence of heat transfer in an MHD second grade fluid film over an unsteady stretching sheet. Phys. Lett. A 372(30), 5037–5045 (2008)CrossRefGoogle Scholar
  6. [6]
    Fetecau, C., Hayat, T., Fetecau, Corina, and Ali, N. Unsteady flow of a second grade fluid between two side walls perpendicular to a plate. Nonlinear Anal.: Real World Appl. 9(3), 1236–1252 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Vajravelu, K. and Rollins, D. Hydromagnetic flow of a second grade fluid over a stretching sheet. Appl. Math. Comput. 148(3), 783–791 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Sakiadis, B. C. Boundary layer behaviour on continuous solid surfaces. AIChE J. 7(1), 26–28 (1961)CrossRefGoogle Scholar
  9. [9]
    Liao, S. J. An analytic solution of unsteady boundary layer flows caused by an impulsive stretching plate. Comm. Nonl. Sci. Num. Sim. 11(3), 326–339 (2006)zbMATHCrossRefGoogle Scholar
  10. [10]
    Hayat, T. and Sajid, M. Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int. J. Eng. Sci. 45(2–8), 93–401 (2007)MathSciNetGoogle Scholar
  11. [11]
    Ishak, A., Nazar, R., and Pop, I. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux. Comm. Nonl. Sci. Num. Sim. 14(1) 109–118 (2009)CrossRefMathSciNetGoogle Scholar
  12. [12]
    Bose, S. and Chakraborty, S. A boundary layer analysis of electro-magneto-hydrodynamic forced convective transport over a melting slab. Int. J. Heat Mass Tran. 51(21–22), 5465–5474 (2008)zbMATHCrossRefGoogle Scholar
  13. [13]
    Nadeem, S. and Awais, M. Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity. Phys. Lett. A 372(30), 4965–4972 (2008)CrossRefGoogle Scholar
  14. [14]
    Hayat, T., Javed, T., and Sajid, M. Analytic solution for MHD rotating flow of a second grade fluid over a shrinking surface. Phys. Lett. A 372(18), 3264–3273 (2008)CrossRefMathSciNetGoogle Scholar
  15. [15]
    Wang, C. Y. Stagnation flow towards a shrinking sheet. Int. J. Nonl. Mech. 43(5), 377–382 (2008)CrossRefGoogle Scholar
  16. [16]
    Liao, S. J. Beyond Perturbation Introduction to Homotopy Analysis Method, Hall/CRC Press, Boca Raton Chapman (2003)Google Scholar
  17. [17]
    Abbasbandy, S. Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method. Chem. Eng. J. 136(2–3), 144–150 (2008)CrossRefGoogle Scholar
  18. [18]
    Abbasbandy, S. Soliton solutions for the Fitzhugh-Nagumo equation with the homotopy analysis method. Appl. Math. Model. 32(12), 2706–2714 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Sajid, M., Awais, M., Nadeem, S., and Hayat, T. The influence of slip condition on thin film flow of a fourth grade fluid by the homotopy analysis method. Comp. Math. Appl. 56(8), 2019–2026 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Chowdhury, M. S. H., Hashim, I., and Abdulaziz, O. Comparison of homotopy analysis method and homotopy-perturbation method for purely nonlinear fin-type problems. Comm. Nonl. Sci. Num. Sim. 14(2), 371–378 (2009)CrossRefMathSciNetGoogle Scholar

Copyright information

© Shanghai University and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • S. Nadeem
    • 1
    Email author
  • Anwar Hussain
    • 1
  • M. Y. Malik
    • 1
  • T. Hayat
    • 1
  1. 1.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations