Skip to main content
Log in

Prediction of nanoparticle transport and deposition in bends

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Nanoparticle transport and deposition in bends with circular cross-section are solved for different Reynolds numbers and Schmidt numbers. The perturbation method is used in solving the equations. The results show that the particle transport patterns are similar and independent of the particle size and other parameters when suspended nanoparticles flow in a straight tube. At the outside edge, particle deposition is the most intensive, while deposition at the inside edge is the weakest. In the upper and lower parts of the tube, depositions are approximately the same for different Schmidt numbers. Curvatures of tube, Reynolds number, and Schmidt number have second-order, forth-order, and first-order effects on the relative deposition efficiency, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedlander, S. K. Smoke, Dust, and Haze; Fundamentals of Aerosol Dynamics, 2nd Ed., Oxford University Press Inc., Oxford (2000)

    Google Scholar 

  2. Kittelson, David B. Engines and nanoparticles: a review. J. Aerosol Sci. 29(5–6), 575–588 (1998)

    Article  Google Scholar 

  3. Yu, Mingzhou, Lin, Jianzhong, Chen, Lihua, and Chan, Tat Leung. Large eddy simulation of a planar jet flow with nanoparticle coagulation. Acta Mechanica Sinica 22(4), 293–300 (2006)

    Article  Google Scholar 

  4. Chan, T. L., Lin, J. Z., Zhou, K., and Chan, C. K. Simultaneous numerical simulation of nano and fine particle coagulation and dispersion in a round jet. J. Aerosol Sci. 37(11), 1545–1561 (2006)

    Article  Google Scholar 

  5. Lin, J. Z., Chan, T. L., Liu, S., Zhou, K., Zhou, Y., and Lee, S. C. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet. International Journal of Nonlinear Sciences and Numerical Simulation 8(1), 45–54 (2007)

    Google Scholar 

  6. Yu, Mingzhou, Lin, Jianzhong, and Chan, Tat Leung. Numerical simulation of nanoparticle synthesis in diffusion flame reactor. Powder Technology 181(1), 9–20 (2008)

    Article  Google Scholar 

  7. Yu, Mingzhou, Lin, Jianzhong, and Chan, Tat Leung. Effect of precursor loading on non-spherical TiO2 nanoparticle synthesis in a diffusion flame reactor. Chemical Engineering Science 63(9), 2317–2329 (2008)

    Article  Google Scholar 

  8. Comer, J. K., Kleinstreuer, C., and Kim, C. S. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. Journal of Fluid Mechanics 435, 55–80 (2001)

    MATH  Google Scholar 

  9. Wang, Jian, Flagan, Richard C., and Seinfeld, John H. Diffusional losses in particle sampling systems containing bends and elbows. J. Aerosol Sci. 33(6), 843–857 (2002)

    Article  Google Scholar 

  10. Zhang, Z., Kleinstreuer, C., Donohue, J. F., and Kim, C. S. Comparison of micro- and nano-size particle depositions in a human upper airway model. J. Aerosol Sci. 36(2), 211–233 (2005)

    Article  Google Scholar 

  11. Malet, J., Alloul, L., Michielsen, N., Boulaud, D., and Renoux, A. Deposition of nanosized particles in cylindrical tubes under laminar and turbulent flow conditions. J. Aerosol Sci. 31(3), 335–348 (2000)

    Article  Google Scholar 

  12. Zhang, Z. and Kleinstreuer, C. Airflow structures and nano-particle deposition in a human upper airway model. Journal of Computational Physics 198(1), 178–210 (2004)

    Article  MATH  Google Scholar 

  13. Sun, Lei, Lin, Jianzhong, and Bao, Fubing. Numerical simulation on the deposition of nanoparticles under laminar conditions. Journal of Hydrodynamics 18(6), 676–680 (2006)

    Article  Google Scholar 

  14. Zamankhan, P., Ahmadi, G., Wang, Z., Hopke, P. K., Cheng, Y. S., Su, W. C., and Leonard, D. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Science and Technology 40(6), 463–476 (2006)

    Article  Google Scholar 

  15. Lin, Peifeng and Lin, Jianzhong. Transport and deposition of nanoparticles in bend tube with circular cross-section. Progress in Natural Science 19(1), 33–39 (2009)

    Article  Google Scholar 

  16. Hinds, William C. Aerosol Technology, Wiley-Interscience Publication, New York (1982)

    Google Scholar 

  17. Bolinder, C. J. Curvilinear coordinates and physical components: an application to the problem of viscous flow and heat transfer in smoothly curved ducts. Journal of Applied Mechanics 63, 985–989 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Peters, Thomas M. and Leith, David. Particle deposition in industrial duct bends. Ann. Occup. Hyg. 48(5), 483–490 (2004)

    Article  Google Scholar 

  19. Pui, David Y. H., Francisco, Romay-Novas, and Liu, Benjamin Y. H. Experimental study of particle deposition in bends of circular cross section. Aerosol Science and Technology 7(3), 301–315 (1987)

    Article  Google Scholar 

  20. Cheng, Y. S. and Wang, C. S. Inertial deposition of particles in a bend. J. Aerosol Sci. 6, 139–145 (1975)

    Article  Google Scholar 

  21. Tsai, C. J. and Pui, D. Y. H. Numerical study of particle deposition in bends of a circular cross-section-laminar flow regime. Aerosol Science and Technology 12(4), 813–831 (1990)

    Article  Google Scholar 

  22. Breuer, M., Baytekin, H. T., and Matida, E. A. Prediction of aerosol deposition in 90 bends using LES and an efficient Lagrangian tracking method. J. Aerosol Sci. 37(11), 1407–1428 (2006)

    Article  Google Scholar 

  23. Zhang, Z. and Kleinstreuer, C. Airflow structures and nano-particle deposition in a human upper airway model. Journal of Computational Physics 198(1), 178–210 (2004)

    Article  MATH  Google Scholar 

  24. Shi, H., Kleinstreuer, C., Zhang, Z., and Kim, C. S. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Physics of Fluids 16, 2199–2213 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-zhong Lin  (林建忠).

Additional information

Contributed by Jian-zhong LIN

Project supported by the National Natural Science Foundation of China (No. 10632070)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Pf., Lin, Jz. Prediction of nanoparticle transport and deposition in bends. Appl. Math. Mech.-Engl. Ed. 30, 957–968 (2009). https://doi.org/10.1007/s10483-009-0802-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-0802-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation