Skip to main content
Log in

Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young’s modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson’s ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koizumi M. The concept of FGM[J]. Ceramic Trans Funct Grad Mater, 1993, 34:3–10.

    Google Scholar 

  2. Praveen G N, Reddy J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. International Journal of Solids and Structures, 1998, 35(33):4457–4476.

    Article  MATH  Google Scholar 

  3. Reddy J N, Chin C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6):593–626.

    Article  Google Scholar 

  4. Loy C T, Lam K Y, Reddy J N. Vibration of functionally graded cylindrical shells[J]. International Journal of Mechanical Science, 1999, 41(3):309–324.

    Article  MATH  Google Scholar 

  5. Reddy J N. Analysis of functionally graded plates[J]. International Journal for Numerical Methods in Engineering, 2000, 47(1/3):663–684.

    Article  MATH  Google Scholar 

  6. Zenkour A M. Generalized shear deformation theory for bending analysis of functionally graded plates[J]. Applied Mathematical Modelling, 2006, 30(1):67–84.

    Article  MATH  Google Scholar 

  7. Zenkour A M. A comprehensive analysis of functionally graded sandwich plates: part 1-deflection and stresses; part 2-buckling and free vibration[J]. International Journal of Solids and Structures, 2005, 42(18/19):5224–5258.

    Article  MATH  Google Scholar 

  8. Timoshenko S P, Goodier J N. Theory of elasticity[M]. 3rd Ed. New York: McGraw-Hill, 1970.

    Google Scholar 

  9. Lekhnitskii S G. Theory of elasticity of an anisotropic elastic body[M]. San Francisco: Holden Day, 1963.

    Google Scholar 

  10. Kalam M A, Tauchert T R. Stresses in an orthotropic elastic cylinder due to a plane temperature distribution[J]. Journal of Thermal Stresses, 1978, 1(1):13–24.

    Article  Google Scholar 

  11. Gamer U. Stress distribution in the rotating elastic-plastic disk[J]. ZAMM, 1985, 65(3):136–137.

    Google Scholar 

  12. Güven U. Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density[J]. International Journal of Mechanical Sciences, 1992, 34(11):133–138.

    Article  MATH  Google Scholar 

  13. You L H, Zhang J J. Elastic-plastic stresses in a rotating solid disk[J]. International Journal of Mechanical Sciences, 1999, 41(3):269–282.

    Article  MATH  Google Scholar 

  14. Eraslan A N, Orcan Y. On the rotating elastic-plastic solid disk of variable thickness having concave profiles[J]. International Journal of Mechanical Sciences, 2002, 44(7):1445–1466.

    Article  MATH  Google Scholar 

  15. Zenkour A M, Allam M N M. On the rotating fiber-reinforced viscoelastic composite solid and annular disks of variable thickness[J]. International Journal of Computational Methods in Engineering Science and Mechanics, 2006, 7(1):21–31.

    Article  Google Scholar 

  16. Farshad M. Stresses in rotating disks of materials with different compressive and tensile moduli[J]. International Journal of Mechanical Sciences, 1974, 16(8):559–564.

    Article  Google Scholar 

  17. Tutuncu N. Effect of anisotropy on stresses in rotating disks[J]. International Journal of Mechanical Sciences, 1995, 37(8):873–879.

    Article  MATH  Google Scholar 

  18. Güven U, Parmaksizoğlu C, Altay O. Elastic-plastic rotating annular disk with rigid casing[J]. ZAMM, 1999, 79(7):499–503.

    Article  MATH  Google Scholar 

  19. Zenkour A M. Analytical solutions for rotating exponentially-graded annular disks with various boundary conditions[J]. International Journal of Structural Stability and Dynamics, 2005, 5(4):557–577.

    Article  MathSciNet  Google Scholar 

  20. Horgan C O, Chan A M. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials[J]. Journal of Elasticity, 1999, 55(1):43–59.

    Article  MATH  MathSciNet  Google Scholar 

  21. Horgan C O, Chan A M. The stress response of functionally graded isotropic linearly elastic rotating disks[J]. Journal of Elasticity, 1999, 55(3):219–230.

    Article  MATH  MathSciNet  Google Scholar 

  22. Tarn J Q. Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads[J]. International Journal of Solids and Structures, 2001, 38(46/47):8189–8206.

    Article  MATH  Google Scholar 

  23. Rooney F, Ferrari M. Tension, bending, and flexure of functionally graded cylinders[J]. International Journal of Solids and Structures, 2001, 38(3):413–421.

    Article  MATH  Google Scholar 

  24. Pobedria B E. Structural anisotropy in viscoelasticity[J]. Polym Mech, 1976, 12:557–561.

    Article  Google Scholar 

  25. Zenkour A M. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories[J]. Journal of Engineering Mathematics, 2004, 50(1):75–93.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zenkour.

Additional information

(Communicated by GUO Xing-ming)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zenkour, A.M., Elsibai, K.A. & Mashat, D.S. Elastic and viscoelastic solutions to rotating functionally graded hollow and solid cylinders. Appl. Math. Mech.-Engl. Ed. 29, 1601–1616 (2008). https://doi.org/10.1007/s10483-008-1208-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-1208-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation