Skip to main content
Log in

Dynamic propagation problems concerning surfaces of asymmetrical mode III crack subjected to moving loads

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

With the theory of complex functions, dynamic propagation problems concerning surfaces of asymmetrical mode III crack subjected to moving loads are investigated. General representations of analytical solutions are obtained with self-similar functions. The problems can be easily converted into Riemann-Hilbert problems using this technique. Analytical solutions to stress, displacement and dynamic stress intensity factor under constant and unit-step moving loads on the surfaces of asymmetrical extension crack, respectively, are obtained. By applying these solutions, together with the superposition principle, solutions of discretionarily intricate problems can be found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erigen A C, Suhubi E S. Elastodynamics, Vol 2, linear theory[M]. New York, San Francisco, London: Academic Press, 1975.

    Google Scholar 

  2. Sih G C. Mechanics of fracture 1, methods of analysis and solutions of crack problems[M]. Leyden: Noordhoff, 1977.

    Google Scholar 

  3. Cherepanov G P. Mechanics of brittle fracture[M]. New York: McGraw Hill International Book Company, 1979, 732–792.

    Google Scholar 

  4. Erdogan F. Crack propagation theories, fracture II[M]. New York: Academic Press, 1968, 497–509.

    Google Scholar 

  5. Sih G C. Some elastodynamics problems of cracks[J]. Int J Frac, 1968, 1(1):51–68.

    Google Scholar 

  6. Kostrov B V. Self-similar problems of propagation of shear cracks[J]. Journal of Applied Mathematics and Mechamics, 1964, 28:1077–1087.

    Article  MATH  MathSciNet  Google Scholar 

  7. Lü Nianchun, Cheng Jin, Cheng Yunhong. Mode III interface crack propagation in two joined media with weak dissimilarity and strong orthotropy[J]. Theo App Frac Mech, 2001, 36:219–231.

    Article  Google Scholar 

  8. Broberg K B. The propagation of a brittle crack[J]. Arch Fur Fysik, 1960, 18(1):159–192.

    MathSciNet  Google Scholar 

  9. Fan Tianyou. Quotation of fracture dynamics[M]. Beijing: Publisher of Beijing Science and Technology, 1990 (in Chinese).

    Google Scholar 

  10. Rubin-Gonzalea C, Mason J J. Dynamic intensity factors at the tip of a uniformly loaded semi-infinite crack in an orthotropic material[J]. J Mech Phys Sol, 2000, 48(5):899–925.

    Article  Google Scholar 

  11. Sih G C, MacDonald B. Fracture of mechanics applied to engineering problems: strain energy density fracture criterion[J]. Eng Frac Mech, 1974, 6(2):361–386.

    Article  Google Scholar 

  12. Sih G C. Handbook of stress intensity factors[M]. Bethlehem: Lehigh University, 1973.

    Google Scholar 

  13. Sih G C. Mechanics of fracture initiation and propagation[M]. Boston: Kluwer Academic Publisher, 1991.

    Google Scholar 

  14. Wang Y H, Cheung Y K, Woo C W. Anti-plane shear problem for an edge crack in a finite orthotropic plate[J]. Eng Frac Mech, 1992, 42(6):971–976.

    Article  Google Scholar 

  15. Knauss W G. Dynamic fracture[J]. Int J Frac, 1987, 25(1):35–91.

    Google Scholar 

  16. Wang Y H. Analysis of an edge-cracked body subjected to a longitudinal shear force[J]. Eng Frac Mech, 1992, 42(1):45–50.

    Article  Google Scholar 

  17. Lü Nianchun, Cheng Jin, Cheng Yunhong. A dynamic propagation problem on the edges of mode III crack subjected to superimpose load[J]. J Harbin Inst Tech, 2005, 37(8):1093–1097 (in Chinese).

    Google Scholar 

  18. Lü Nianchun, Cheng Yunhong, Cheng Jin. Studies on some anti-plane problems of a dynamic propagation crack[J]. J Appl Mech, 2004, 21(4):156–160 (in Chinese).

    Google Scholar 

  19. Lü Nianchun, Cheng Yunhong, Tian Xiubo, Cheng Jin. Analytical solution to mode III crack propagation under the action of variable loadings[J]. J Harbin Inst Tech, 2006, 38(8):1310–1313 (in Chinese).

    Google Scholar 

  20. Muskhelishvili N I. Singular integral equations[M]. Moscow: Nauka, 1968.

    Google Scholar 

  21. Muskhelishvili N I. Some fundamental problems in the mathematical theory of elasticity[M]. Moscow: Nauka, 1966.

    Google Scholar 

  22. Atkinson C. On the dynamic stress and displacement field associated with a crack propagating across the interface between two media[J]. Int J Eng Sci, 1975, 13(5):491–506.

    Article  Google Scholar 

  23. Atkinson C. The propagation of a brittle crack in anisotropic material[J]. Int J Engng Sci, 1965, 3(2):77–91.

    Article  MATH  Google Scholar 

  24. Hoskins R F. Generalized functions[M]. New York: Ellis Horwood, 1979, 19–125.

    Google Scholar 

  25. Wang Xieshan. Singular functions and their applications in mechanics[M]. Beijing: Scientific Press, 1993, 3–45 (in Chinese).

    Google Scholar 

  26. Gahov F D. Boundary-value problems[M]. Moscow: Fizmatgiz, 1963, 10–136.

    Google Scholar 

  27. Sih G C. Mechanics of fracture 4, elastodynamics crack problems[M]. Leyden: Noordhoff International Publishing, 1977, 213–247.

    Google Scholar 

  28. Kanwal R P, Sharma D L. Singularity methods for elastostatics[J]. J Elasticity, 1976, 6(4):405–418.

    Article  MATH  MathSciNet  Google Scholar 

  29. Editorial group of mathematics handbook. Mathematics handbook[M]. Beijing: Advanced Education Press, 2002, 244–300 (in Chinese).

    Google Scholar 

  30. Teaching office of mathematics of Tongji University. Advanced mathematics[M]. Vol 1. Beijing: Advanced Education Press, 1994, 167–172 (in Chinese).

    Google Scholar 

  31. Wu K C. Dynamic crack growth in anisotropic material[J]. Int J Frac, 2000, 106(1):1–12.

    Article  Google Scholar 

  32. Kalthoff J F, Beinert J, Winkler S. Measurements of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam specimens[C]. In: Fast Fracture and Crack Arrest, ASTM STP 627, Philadelphia, 1977, 161–176.

  33. Kobayashi A S. Dynamic fracture analysis by dynamic finite element method: generation and prediction analyses[C]. In: Nonlinear and Dynamic Fracture Mechanics, ASME AMD 35, New York, 1979, 19–36.

  34. Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture: part 1, crack initiation and arrest[J]. Int J Frac, 1984, 25(4):247–262.

    Article  Google Scholar 

  35. Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture: part 2, microstructural aspects[J]. Int J Frac, 1984, 26(1):65–80.

    Article  Google Scholar 

  36. Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture: part 3, on steady-state crack propagation and crack branching[J]. Int J Frac, 1984, 26(2):141–154.

    Article  Google Scholar 

  37. Ravi-Chandar K, Knauss W G. An experimental investigation into dynamic fracture: part 4, on the interaction of stress waves with propagation cracks[J]. Int J Frac, 1984, 26(3):189–200.

    Article  Google Scholar 

  38. Sneddon N I. Fourier transform[M]. New York: McGraw-Hill, 1951.

    Google Scholar 

  39. Muskhelishvili N I. Some basic problems from the mathematical theory of elasticity[M]. Groningen-Holland: P Noordoff, 1953.

    Google Scholar 

  40. Galin L A. Contact problems in elasticity theory[M]. Moscow: GITTL, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian-chun Lü  (吕念春).

Additional information

(Communicated by WANG Yin-bang)

Project supported by the Post-Doctoral Science Foundation of China (No. 2005038199) and the Natural Science Foundation of Heilongjiang Province of China (No. ZJG04-08)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, Nc., Cheng, Yh., Li, Xg. et al. Dynamic propagation problems concerning surfaces of asymmetrical mode III crack subjected to moving loads. Appl. Math. Mech.-Engl. Ed. 29, 1279–1290 (2008). https://doi.org/10.1007/s10483-008-1003-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-1003-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation