Skip to main content
Log in

Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the determination of thermoelastic displacement, stress and temperature in a functionally graded spherically isotropic infinite elastic medium having a spherical cavity, in the context of the linear theory of generalized thermoelasticity with two relaxation time parameters (Green and Lindsay theory). The surface of cavity is stress-free and is subjected to a time-dependent thermal shock. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain, which is then solved by an eigenvalue approach. Numerical inversion of the transforms is carried out using the Bellman method. Displacement, stress and temperature are computed and presented graphically. It is found that variation in the thermo-physical properties of a material strongly influences the response to loading. A comparative study with a corresponding homogeneous material is also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biot M A. Thermoelasticity and irreversible thermodynamics[J]. J Appl Phys, 1956, 27(3):240–253.

    Article  MATH  MathSciNet  Google Scholar 

  2. Chadwick P. Progress in solid mechanics[M]. Vol I. Hill R, Sneddon I N (eds). Amsterdam: North Holland, 1960.

    Google Scholar 

  3. Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Mech Phys Solid, 1967, 15(5):299–309.

    Article  MATH  Google Scholar 

  4. Green A E, Lindsay K A. Thermoelasticity[J]. J Elast, 1972, 2(1):1–7.

    Article  MATH  Google Scholar 

  5. Tzou D Y. Experimental support for the lagging behavior in heat propagation[J]. J Thermophys Heat Transf, 1995, 9(4):686–693.

    Article  Google Scholar 

  6. Mitra K, Kumar S, Vedaverg A. Experimental evidence of hyperbolic heat conduction in processed meat[J]. J Heat Transfer (ASME), 1995, 117(3):568–573.

    Article  Google Scholar 

  7. Chandrasekharaiah D S. Thermoelasticity with second sound[J]. A Review Appl Mech Rev, 1986, 39(3):355–375.

    MATH  MathSciNet  Google Scholar 

  8. Bahar L, Hetnarski R. State space approach to thermoelasticity[J]. J Thermal Stresses, 1978, 1(1):135–145.

    Article  Google Scholar 

  9. Ezzat M. Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions[J]. Int J Eng Sci, 1995, 33(14):2011–2020.

    Article  MATH  Google Scholar 

  10. Hetnarski R B, Ignaczak J. Generalized thermoelasticity response of semi-space to a short laser pulse[J]. J Thermal Stresses, 1994, 17(3):377–396.

    Article  MathSciNet  Google Scholar 

  11. Bagri A, Eslami M R. Generalized coupled thermoelasticity of disks based on the Lord-Shulman model[J]. J Thermal Stresses, 2004, 27(8):691–704.

    Article  Google Scholar 

  12. Kar A, Kanoria M. Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole[J]. International Journal of Solids and Structures, 2007, 44(9):2961–2971.

    Article  MATH  Google Scholar 

  13. Das N C, Lahiri A. Thermoelastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium[J]. Ind J Pure Appl Math, 2000, 31(1):19–32.

    MATH  MathSciNet  Google Scholar 

  14. Kanoria M, Kar A. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc[C]. Proceedings of the Seventh International Congress on Thermal Stresses, 2007, 557–560.

  15. Ghosh M K, Kanoria M. Generalized thermoelastic problem of a spherically isotropic infinite elastic medium containing a spherical cavity[J]. J Thermal Stresses, 2008, 31(8):665–679.

    Article  Google Scholar 

  16. Aboudi J, Pindera M J, Arnold S M. Thermo-inelastic response of functionally graded composites[J]. International Journal of Solids and Structures, 1995, 32(12):1675–1710.

    Article  MATH  Google Scholar 

  17. Wetherhold R C, Wang S S. The use of functionally graded materials to eliminate or control thermal deformation[J]. Composites Science and Technology, 1996, 28:1099–1104.

    Article  Google Scholar 

  18. Sugano Y. An expression for transient thermal stress in a nonhomogeneous plate with temperature variation through thickness[J]. Ingenieur Archiv, 1987, 57(2):147–156.

    Article  MATH  MathSciNet  Google Scholar 

  19. Qian L F, Batra R C. Transient thermoelastic deformations of a thick functionally graded plate[J]. J Thermal Stresses, 2004, 27(8):705–740.

    Article  Google Scholar 

  20. Lutz M P, Zimmerman R W. Thermal stresses and effective thermal expansion coefficient of a functionally graded sphere[J]. J Thermal Stresses, 1996, 19(1):39–54.

    Article  MathSciNet  Google Scholar 

  21. Ye G R, Chen W Q, Cai J B. A uniformly heated functionally graded cylindrical shell with transverse isotropy[J]. Mechanics Research Communication, 2001, 28(5):535–542.

    Article  MATH  Google Scholar 

  22. Chen W Q, Wang X, Ding H J. Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy[J]. Journal of the Acoustical Society of America, 1999, 106(5):2588–2594.

    Article  Google Scholar 

  23. Ding H J, Wang H M, Chen W Q. Analytical thermo-elastodynamic solutions for a nonhomogeneous transversely isotropic hollow sphere[J]. Archive of Applied Mechanics, 2002, 72(8):545–553.

    Article  Google Scholar 

  24. Chen W Q, Ding H J, Wang X. The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property[J]. International Journal of Solids and Structures, 2001, 38(38/39):7015–7027.

    Article  MATH  Google Scholar 

  25. Wang B L, Mai Y W. Transient one dimensional heat conduction problems solved by finite element[J]. International Journal of Mechanical Sciences, 2005, 47(2):303–317.

    Article  Google Scholar 

  26. Shao Z S, Wang T J, Ang K K. Transient thermo-mechanical analysis of functionally graded hollow circular cylinders[J]. J Thermal Stresses, 2007, 30(1):81–104.

    Article  Google Scholar 

  27. Mallik S H, Kanoria M. Generalized thermo-elastic functionally graded solid with a periodically varying heat source[J]. International Journal of Solids and Structures, 2007, 44(22/23):7633–7645.

    Article  MATH  Google Scholar 

  28. Bagri A, Eslami M R. A unified generalized thermoelasticity formulation; application to thick functionally graded cylinders[J]. J Thermal Stresses, 2007, 30(9/10):911–930.

    Article  Google Scholar 

  29. Chen W Q. Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy[J]. Journal of Strain Analysis for Engineering Design, 2000, 35(1):13–20.

    Article  Google Scholar 

  30. Obata Y, Noda N. Steady thermal stresses in a hollow circular cylinder and a hollow sphere of a functionally graded material[J]. J Thermal Stresses, 1994, 17(5):471–487.

    Article  Google Scholar 

  31. Ootao Y, Tanigawa Y. Transient thermoelastic problem of a functionally graded cylindrical panel due to nonuniform heat supply[J]. J Thermal Stresses, 2007, 30(5):441–457.

    Article  Google Scholar 

  32. Das N C, Lahiri A, Sen P K. Eigenvalue approach to three dimensional generalized thermoelasticity[J]. Bulletin Calcutta Math Soc, 2006, 98(4):305–318.

    MATH  MathSciNet  Google Scholar 

  33. Nowacki W. Dynamic problems of thermoelasticity[M]. Warszawa: Polish Scientific Publishers, 1975.

    Google Scholar 

  34. Wang H M, Ding H J, Chen Y M. Thermoelastic dynamic solution of a multilayered spherically isotropic hollow sphere for spherically symmetric problems[J]. Acta Mechanica, 2005, 173(1/4):131–145.

    Google Scholar 

  35. Bellman R, Kolaba R E, Lockette J A. Numerical inversion of the Laplace transform[M]. New York: American Elsevier Pub Co, 1966.

    Google Scholar 

  36. Dhaliwal R S, Sing A. Dynamic coupled thermoelasticity[M]. Delhi: Hindustan Publ, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Additional information

(Communicated by GUO Xing-ming)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, M.K., Kanoria, M. Generalized thermoelastic functionally graded spherically isotropic solid containing a spherical cavity under thermal shock. Appl. Math. Mech.-Engl. Ed. 29, 1263–1278 (2008). https://doi.org/10.1007/s10483-008-1002-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-1002-2

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation