Skip to main content
Log in

Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order. A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time. The free stream velocity follows an exponentially increasing or decreasing small perturbation law. Using the approximate method, the expressions for the velocity microrotation, temperature, and concentration are obtained. Futher, the results of the skin friction coefficient, the couple stress coefficient, and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B 0 :

magnetic flux density

C :

concentration

C f :

skin-friction coefficient

C m :

couple stress coefficient

C p :

specific heat at constant pressure

D :

chemical molecular diffusivity

g :

acceleration due to gravity

h :

refrection parameter

Grc :

modified Grashof number

Gr :

Grashof number

j :

microinertia per unit mass

k :

thermal conductivity

K :

permeability of the porous medium

K c :

chemical reaction parameter

M :

magnetic field parameter

m 1 :

Maxwell’s reflection coefficient

L :

mean free path

n :

parameter related to microgyration vector and shear stress

N :

model parameter

Nu :

Nusselt number

P :

pressure

Pr :

Prandtl number

Sc :

Schmidt number

Sh :

Sherwood number

t :

time

T :

temperature

u, υ :

components of velocities along and perpendicular to the plate

U 0 :

scale of free stream velocity

V 0 :

scale of suction velocity

x, y :

distances along and perpendicular to the plate, respectively

α :

fluid thermal diffusivity

β :

ratio of vortex viscosity and dynamic viscosity

β c :

coefficient of volumetric expansion with concentration

β f :

coefficient of volumetric expansion of the working fluid

γ :

spin gradient viscosity

δ :

scalar constant

ɛ :

scalar constant (≪ 1)

θ :

dimensionless temperature

Λ:

coefficient of vortex (microrotation) viscosity

µ:

fluid dynamic viscosity

ρ :

fluid density

σ :

electrical conductivity

ν :

fluid kinematic viscosity

ν r :

fluid kinematic rotational viscosity

ω :

angular velocity vector

w:

wall condition

∞:

free stream condition

( )′:

differentiation with respect to y

*:

dimensional properties

References

  1. Eringen A C. Simple microfluids[J]. Int J Engng Sci, 1964, 2:205–217.

    Article  MATH  MathSciNet  Google Scholar 

  2. Eringen A C. Theory of micropolar fluids[J]. J Math Mech, 1966, 16:1–18.

    MathSciNet  Google Scholar 

  3. Eringen A C. Theory of Termomicrofluids[J]. J Math Anal Appl, 1972, 38:480–496.

    Article  MATH  Google Scholar 

  4. Ariman T, Turk M A, Sylvester N D. Microcontinuum fluid mechanics-areview[J]. Int J Engng Sci, 1973, 11:905–930.

    Article  MATH  Google Scholar 

  5. Gorla R S R. Mixed convection in a micropolar fluid from a vertical surface with uniform heat flux[J]. Int J Engng Sci, 1992, 30:349–358.

    Article  Google Scholar 

  6. Rees D A S, Pop I. Free convection boundary layer flow of a micropolar fluid from a vertical flat plate[J]. IMAJ Appl Math, 1998, 61:179–197.

    Article  MATH  MathSciNet  Google Scholar 

  7. Singh Ajay Kumar. Numerical solution of unsteady free convection flow of an incompressible micropolar fluid past an infinite vertical plate with temperature gradient dependent heat source[J]. J Energy Heat and Mass Transfer, 2002, 24:185–194.

    Google Scholar 

  8. Hiremath P S, Patil P M. Free convection effects on oscillatory flow of couple stress field through a porous medium[J]. Acta Mech, 1993, 98:143–158.

    Article  MATH  Google Scholar 

  9. Helmy K A. MHD unsteady free convection flow past a vertical porous plate[J]. ZAMM, 1998, 98:255–270.

    Article  MathSciNet  Google Scholar 

  10. El-Hakiem M A, Mohammadein A A, El-Kabeir S M M, Gorla R S R. Joule heating effects on magnetohydrodynamic free convection flow of a micropolar fluid[J]. Int Comm Heat Mass Tran, 1999, 26(2):219–227.

    Article  Google Scholar 

  11. El-Amin M F. Magnetohydrodynamic free convection and mass transfer flow in micropolar fluid with constant suction[J]. J Magn Mater, 2001, 234:567–574.

    Article  Google Scholar 

  12. Kim Y J. Unsteady convection flow of micropolar fluids past a vertical plate embedded in a porous medium[J]. Acta Mech, 2001, 148:105–116.

    Article  MATH  Google Scholar 

  13. Kim Y J. Heat and mass transfer in MHD micropolar flow over a vertical moving plate in a porous medium[J]. Trans Porous Media, 2004, 56:17–37.

    Article  Google Scholar 

  14. Khandelwal K, Anil Gupta, Poonam, Jain N C. Effects of couple stresses on the flow through a porous medium with variable permeability in slip flow regime[J]. Ganita, 2003, 54(2):203–212.

    Google Scholar 

  15. Sharma P K, Chaudhary R C. Effect of variable suction on transient free convective viscous incompressible flow past a vertical plate with periodic temperature variations in slip flow regime[J]. Emirates Journal of Engineering Research, 2003, 8(2):33–38.

    Google Scholar 

  16. Sharma P K. Influence of periodic temperature and concentration on unsteady free convective viscous incompressible flow and heat transfer past a vertical plate in slip-flow regime[J]. Matematicas, 2005, XIII(1):51–62.

    Google Scholar 

  17. Cussler E L. Diffusion mass transfer in fluid systems[M]. 2nd Ed. Cambridge: Cambridge University Press. 1998.

    Google Scholar 

  18. Das U N, Deka R K, Soundalgekar V M. Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction[J]. Forschung im Ingenieurwesen Engineering Research, 1994, 60:284–287.

    Article  Google Scholar 

  19. Muthucumarswamy R, Ganesan P. First order chemical reaction on flow past an impulsively started vertical plate with uniform heat and mass flux[J]. Acta Mech, 2001, 147:45–57.

    Article  Google Scholar 

  20. Muthucumarswamy R. Effects of a chemical reaction on moving isothermal vertical surface with suction[J]. Acta Mech, 2002, 155:65–70.

    Article  Google Scholar 

  21. Kandasamy R, Periasamy K, Prashu Sivagnana K K. Effects of chemical reaction, heat and mass transfer along wedge with heat source and concentration in the presence of suction or injection[J]. Int J Heat Mass transfer, 2005, 48:1388–1394.

    Article  Google Scholar 

  22. Rees D A S, Bassom A P. The Blasisum boundary layer flow of microppolar fluid[J]. Int Engng Sci, 1996, 34:113–124.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Chaudhary.

Additional information

Communicated by ZHOU Zhe-wei

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhary, R.C., Jha, A.K. Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime. Appl. Math. Mech.-Engl. Ed. 29, 1179–1194 (2008). https://doi.org/10.1007/s10483-008-0907-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0907-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation