Skip to main content
Log in

“Final all possible steps” approach for accelerating stochastic simulation of coupled chemical reactions

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we develop a modified accelerated stochastic simulation method for chemically reacting systems, called the “final all possible steps” (FAPS) method, which obtains the reliable statistics of all species in any time during the time course with fewer simulation times. Moreover, the FAPS method can be incorporated into the leap methods, which makes the simulation of larger systems more efficient. Numerical results indicate that the proposed methods can be applied to a wide range of chemically reacting systems with a high-precision level and obtain a significant improvement on efficiency over the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. McAdams H H, Arkin A. Stochastic mechanisms in gene expression[J]. Proc Natl Acad Sci U.S.A., 1997, 94(3):814–819.

    Article  Google Scholar 

  2. Arkin A, Ross J, McAdams H H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected E. coli cells[J]. Genetics, 1998, 149(4):1633–1648.

    Google Scholar 

  3. Fedoroff N, Fontana W. Small numbers of large molecules[J]. Science, 2002, 297(5584):1129–1130.

    Article  Google Scholar 

  4. van Kampen N G. Stochastic process in physics and chemistry[M]. Amsterdam: North-Holland Publishing Company, 1981.

    Google Scholar 

  5. Gillespie D T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[J]. J Comput Phys, 1976, 22(4):403–434.

    Article  MathSciNet  Google Scholar 

  6. Gillespie D T. Exact stochastic simulation of coupled chemical reactions[J]. J Chem Phys, 1977, 81(25):2340–2361.

    Article  Google Scholar 

  7. Gibson M, Bruck J. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems[J]. J Chem Phys, 2000, 104(9):1876–1889.

    Google Scholar 

  8. McCollum J M, Peterson G D, Cox C D, Simpson M L, Samatova N F. The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior[J]. Comput Biol Chem, 2006, 30(1):39–49.

    Article  MATH  Google Scholar 

  9. Gillespie D T. Approximate accelerated stochastic simulation of chemically reacting systems[J]. J Chem Phys, 2001, 115(4):1716–1733.

    Article  Google Scholar 

  10. Gillespie D T, Petzold L R. Improved leap-size selection for accelerated stochastic simulation[J]. J Chem Phys, 2003, 119(16):8229–8234.

    Article  Google Scholar 

  11. Rathinam M, Petzold L R, Cao Y, Gillespie D T. Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method[J]. J Chem Phys, 2003, 119(24):12784–12794.

    Article  Google Scholar 

  12. Tian T, Burrage K. Binomial leap methods for simulating stochastic chemical kinetics[J]. J Chem Phys, 2004, 121(21):10356–10364.

    Article  Google Scholar 

  13. Chatterjee A, Vlachos D G, Katsoulakis M A. Binomial distribution based τ-leap accelerated stochastic simulation[J]. J Chem Phys, 2005, 122(2):024112.

    Google Scholar 

  14. Peng X J, Zhou W, Wang Y F. Efficient binomial leap method for simulating chemical kinetics[J]. J Chem Phys, 2007, 126(22):224109.

    Google Scholar 

  15. Cai X D, Xu Z Y. K-leap method for accelerating stochastic simulation of coupled chemical reactions[J]. J Chem Phys, 2007, 126(7):1.

    Article  Google Scholar 

  16. Auger A, Chatelain P, Koumoutsakos P. R-leaping:Accelerating the stochastic simulation algorithm by reaction leaps[J]. J Chem Phys, 2006, 125(8):084103.

    Google Scholar 

  17. Lipshtat A. “All possible steps” approach to the accelerated use of Gillespie’s algorithm[J]. J Chem Phys, 2007, 126(18):184103.

    Google Scholar 

  18. Cao Y, Gillespie D T, Petzold L R. Efficient step size selection for the tau-leaping simulation method[J]. J Chem Phys, 2006, 124(4):044109.

    Google Scholar 

  19. Cao Y, Petzold L R. Accuracy limitations and the measurement of errors in the stochastic simulation of chemically reacting systems[J]. J Comput Phys, 2006, 212(1):6–24.

    Article  MATH  MathSciNet  Google Scholar 

  20. Cao Y, Li H, Petzold L R. Efficient exact stochastic simulation algorithm for chemically reacting systems[J]. J Comput Phys, 2004, 121(9):4059–4067.

    Google Scholar 

  21. Cao Y, Gillespie D T, Petzold L R. Avoiding negative populations in explicit Poisson tau-leaping[J]. J Chem Phys, 2005, 123(5):054104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-fei Wang.

Additional information

Communicated by GUO Xing-ming

Project supported by the National Natural Science Foundation of China (No. 30571059), the National High-Tech Research and Development Program of China (No. 2006AA02Z190).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Peng, Xj., Liu, X. et al. “Final all possible steps” approach for accelerating stochastic simulation of coupled chemical reactions. Appl. Math. Mech.-Engl. Ed. 29, 379–387 (2008). https://doi.org/10.1007/s10483-008-0309-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0309-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation