Advertisement

Applied Mathematics and Mechanics

, Volume 29, Issue 1, pp 75–87 | Cite as

Global qualitative analysis of new Monod type chemostat model with delayed growth response and pulsed input in polluted environment

  • Meng Xin-zhu  (孟新柱)Email author
  • Zhao Qiu-lan  (赵秋兰)
  • Chen Lan-sun  (陈兰荪)
Article

Abstract

In this paper, we consider a new Monod type chemostat model with time delay and impulsive input concentration of the nutrient in a polluted environment. Using the discrete dynamical system determined by the stroboscopic map, we obtain a “microorganism-extinction” periodic solution. Further, we establish the sufficient conditions for the global attractivity of the microorganism-extinction periodic solution. Using new computational techniques for impulsive and delayed differential equation, we prove that the system is permanent under appropriate conditions. Our results show that time delay is “profitless”.

Key words

permanence impulsive input chemostat model time delay for growth response extinction 

Chinese Library Classification

O175 

2000 Mathematics Subject Classification

34K45 34C05 92D25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hsu S B. A competition model for a seasonally fluctuating nutrient[J]. Journal of Mathematical Biology, 1980, 9(2):115–132.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Smith H L. Competitive coexistence in an oscillating chemostat[J]. SIAM Journal on Applied Mathematics, 1981, 40(3):498–522.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Butler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate[J]. SIAM Journal on Applied Mathematics, 1985, 45(3):435–449.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Pilyugin S S, Waltman P. Competition in the unstirred chemostat with periodic input and washout[J]. SIAM Journal on Applied Mathematics, 1999, 59(4):1157–1177.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Simth H L, Waltman P. The theory of the chemostat[M]. Cambridge: Cambridge University Press, 1995.Google Scholar
  6. [6]
    Hsu S B, Hubbell S P, Waltman P. A mathematical theory for single nutrient competition in continuous cultures of micro-organisms[J]. SIAM Journal on Applied Mathematics, 1977, 32(2):366–382.zbMATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Picket A M. Growth in a changing environment[M]. In: Bazin M J (ed). Microbial Population Dynamics, Florida: CRC Press, 1982.Google Scholar
  8. [8]
    Monod J. La technique de culture continue; théorie et applications[J]. Ann Inst Pasteur, 1950, 79(19):390–401.Google Scholar
  9. [9]
    Hansen S R, Hubbell S P. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[J]. Science, 1980, 207(4438):1491–1493.CrossRefGoogle Scholar
  10. [10]
    Barford J P, Pamment N B, Hall R J. Lag phases and transients[M]. In: Bazin M J (ed). Microbial Population Dynamics, Florida: CRC Press, 1982.Google Scholar
  11. [11]
    Ramkrishna D, Fredrickson A G, Tsuchiya H M. Dynamics of microbial propagation: models considering inhibitors and variable cell composition[J]. Biotechnology and Bioengineering, 1967, 9(2):129–170.CrossRefGoogle Scholar
  12. [12]
    Bush A W, Cook A E. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater[J]. Journal of Theoretical Biology, 1976, 63(2):385–395.CrossRefGoogle Scholar
  13. [13]
    Caperon J. Time lag in population growth response of isochrysis galbana to a variable nitrate environment[J]. Ecology, 1969, 50(2):188–192.CrossRefGoogle Scholar
  14. [14]
    Freedman H I, So J W-H, Waltman P. Coexistence in a model of competition in the chemostat incorporating discrete delays[J]. SIAM Journal on Applied Mathematics, 1989, 49(3):859–870.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Freedman H I, So J W-H, Waltman P. Chemostat competition with time delays[M]. In: Eisenfeld J, Levine D S (eds). Biomedical Modelling and Simulation, New York: Scientific Publishing Co, 1989.Google Scholar
  16. [16]
    Ruan Shi-gui, Wolkowicz Gail S K. Bifurcation analysis of a chemostat model with a distributed delay[J]. Journal of Mathematical Analysis and Applications, 1996, 204(3)786–812.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Thingstad T F, Langeland T I. Dynamics of chemostat culture: the effect of a delay in cell response[J]. Journal of Theoretical Biology, 1974, 48(1):149–159.CrossRefGoogle Scholar
  18. [18]
    Ellermeyer S F. Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth[J]. SIAM Journal on Applied Mathematics, 1994, 54(2):456–465.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Wolkowicz Gail S K, Xia H. Global asymptotic behavior of a chemostat model with discrete delays[J]. SIAM Journal on Applied Mathematics, 1997, 57(4):1019–1043.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Wolkowicz Gail S K, Xia Hua-xing, Ruan Shi-gui. Competition in the chemostat: a distributed delay model and its global asymptotic behavior[J]. SIAM Journal on Applied Mathematics, 1997, 57(5):1281–1310.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Xia Hua-xing, Wolkowicz Gail S K, Wang Lin. Transient oscillations induced by delayed growth response in the chemostat[J]. Journal of Mathematical Biology, 2005, 50(5):489–530.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Zhao Tao. Global periodic solutions for a differential delay system modelling a microbial population in the chemostat[J]. Journal of Mathematical Analysis and Applications, 1995, 193(1):329–352.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    MacDonald N. Time delays in chemostat models[M]. In: Bazin M J (ed). Microbial Population Dynamics, Florida: CRC Press, 1982.Google Scholar
  24. [24]
    Hale J K, Somolinas A S. Competition for fluctuating nutrient[J]. Journal of Mathematical Biology, 1983, 18(3):255–280.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Buler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate[J]. SIAM Journal on Applied Mathematics, 1985, 45(3):435–449.CrossRefMathSciNetGoogle Scholar
  26. [26]
    Wolkowicz Gail S K, Zhao Xiao-qiang. N-spicies competition in a periodic chemostat[J]. Differential and Integral Equations: An International Journal for Theory and Applications, 1998, 11(3):465–491.zbMATHMathSciNetGoogle Scholar
  27. [27]
    Funasaki E, Kot M. Invasion and chaos in a periodically pulsed mass-action chemostat[J]. Theoretical Population Biology, 1993, 44(2):203–224.zbMATHCrossRefGoogle Scholar
  28. [28]
    Smith R J, Wolkowicz Gail S K. Analysis of a model of the nutrient driven self-cycling fermentation process[J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series B, 2004, 11(2):239–265.zbMATHGoogle Scholar
  29. [29]
    Sun Shu-lin, Chen Lan-sun. Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration[J]. Journal of Mathematical Chemistry, 2007, 42(4):837–848.CrossRefGoogle Scholar
  30. [30]
    Bainov D, Simeonov P. Impulsive differential eqations: periodic solutions and applications[M]. Harlow: Longman Scientific and Technical Press, 1993.Google Scholar
  31. [31]
    Lakshmikantham V, Bainov D, Simeonov P. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.Google Scholar
  32. [32]
    Liu Xian-ning, Chen Lan-sun. Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J]. Chaos, Solitons and Fractals, 2003, 16(2):311–320.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulses[J]. Mathematical Biosciences, 1998, 149(1):23–36.zbMATHCrossRefGoogle Scholar
  34. [34]
    Ballinger G, Liu X. Permanence of population growth models with impulsive effects[J]. Mathematical and Computer Modelling, 1997, 26(12):59–72.CrossRefMathSciNetGoogle Scholar
  35. [35]
    Sun Ming-jing, Chen Lan-sun. Analysis of the dynamical behavior for enzyme-catalyzed reactions with impulsive input[J]. Journal of Mathematical Chemistry, 2006, DOI: 10.1007/s10910-006-9207-5.Google Scholar
  36. [36]
    Chen Lan-sun, Chen Jian. Nonlinear biological dynamic systems[M]. Beijing: Science Press, 1993 (in Chinese).Google Scholar
  37. [37]
    Kuang Yang. Delay differential equations with applications in population dynamics[M]. California: Academic Press Inc, 1993.Google Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. and Springer-Verlag 2008

Authors and Affiliations

  • Meng Xin-zhu  (孟新柱)
    • 1
    • 2
    Email author
  • Zhao Qiu-lan  (赵秋兰)
    • 1
  • Chen Lan-sun  (陈兰荪)
    • 2
    • 3
  1. 1.College of ScienceShandong University of Science and TechnologyQingdaoP. R. China
  2. 2.Department of Applied MathematicsDalian University of TechnologyDalianP. R. China
  3. 3.Institute of Mathematics, Academy of Mathematics and System SciencesChinese Academy of SciencesBeijingP. R. China

Personalised recommendations