Advertisement

Applied Mathematics and Mechanics

, Volume 29, Issue 1, pp 61–66 | Cite as

Solution of nonlinear wave equation of elastic rod

  • Guo Peng  (郭鹏)
  • Zhang Lei  (张磊)
  • Lü Ke-pu  (吕克璞)Email author
  • Duan Wen-shan  (段文山)
Article

Abstract

The longitudinal oscillation of a nonlinear elastic rod with lateral inertia are studied. A nonlinear wave equation is derived. The equation is solved by the method of full approximation.

Key words

nonlinear elastic rod method of full approximation KdV equation combined KdV and mKdV equation 

Chinese Library Classification

O357.1 

2000 Mathematics Subject Classification

74B20 74J30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Han Qiang, Dai Liming, Dong Mingzhe. Solitary wave in a nonlinear elastic structural element of large deflection[J]. Communication in Nonlinear Science and Numerical Simulation, 2005, 10(6):607–616.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Zhuang Wei, Zhang Shanyuan. The strain solitary waves in a nonlinear elastic rod[J]. Acta Mechanica Sinica, 1988, 20(1):58–67 (in Chinese).Google Scholar
  3. [3]
    Zhuang Wei, Yang Guitong. The propagation of solitary waves in a nonlinear elastic rod[J]. Applied Mathematics and Mechanics (English Edition), 1986, 7(7):615–626.zbMATHCrossRefGoogle Scholar
  4. [4]
    Duan Wenshan, Zhao Jingbao. Solitary waves in a quadratic nonlinear elastic rod[J]. Chaos, solitons and Fractals, 2000, 11(8):1265–1267.zbMATHCrossRefGoogle Scholar
  5. [5]
    LÜ Kepu, Guo Peng, Zhang Lei, Yi Jinqiao, Duan Wen-shan. Perturbation analysis for wave equation of a nonlinear elastic rod[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(9):1233–1238.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Dai Shiqiang, Sigalov G F, Diogenov A V. Approximate analytical solutions for some strongly nonlinear problems[J]. Scientia Sinica Ser A, 1990, 32(2):153–162 (in Chinese).Google Scholar
  7. [7]
    Dai Shiqiang. Generalization of the method of full approximation and its applications[J]. Applied Mathematics and Mechanics (English Edition), 1991, 12(3):255–264.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Zhou Mingru, Zhang Baoshan. A revised form of the method of full approximation and its application[J]. Mathematica Applicata, 1995, 8(3):317–321 (in Chinese).zbMATHMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. and Springer-Verlag 2008

Authors and Affiliations

  • Guo Peng  (郭鹏)
    • 1
  • Zhang Lei  (张磊)
    • 1
  • Lü Ke-pu  (吕克璞)
    • 2
    Email author
  • Duan Wen-shan  (段文山)
    • 2
  1. 1.School of Mathematics, Physics and Software EngineeringLanzhou Jiaotong UniversityLanzhouP. R. China
  2. 2.College of Physics and Electronic EngineeringNorthwest Normal UniversityLanzhouP. R. China

Personalised recommendations