Advertisement

Applied Mathematics and Mechanics

, Volume 29, Issue 1, pp 51–60 | Cite as

Research progress on thermal protection materials and structures of hypersonic vehicles

  • Yang Ya-zheng  (杨亚政)Email author
  • Yang Jia-ling  (杨嘉陵)
  • Fang Dai-ning  (方岱宁)
Article

Abstract

Hypersonic vehicles represent future trends of military equipments and play an important role in future war. Thermal protection materials and structures, which relate to the safety of hypersonic vehicles, are one of the most key techniques in design and manufacture of hypersonic vehicles. Among these materials and structures, such as metallic temperature protection structure, the temperature ceramics and carbon/carbon composites are usually adopted in design. The recent progresses of research and application of ultra-high temperature materials in preparation, oxidation resistance, mechanical and physical characterization are summarized.

Key words

hypersonic vehicle high-temperature thermal protection 

Chinese Library Classification

V250.1 

2000 Mathematics Subject Classification

76K05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Moses Paul L, Rausch Vincent L, Nguyen Luat T, Hill Jeryl R. NASA hypersonic flight demonstrators-overview, status and future plans[J]. Acta Astronautica, 2004, 55(3/4):619–630.Google Scholar
  2. [2]
    Jay Miller. The X-planes X-1 to X-29[J]. Specialty Sress, Marine on St Croix, MN, 1983, (4):10–13.Google Scholar
  3. [3]
    Bohon H L, Shideler J L. Radioactive metallic thermal protection systems: a status report[J]. Journal of Spacecraft and Rockets, 1977, 12(10):626–631.CrossRefGoogle Scholar
  4. [4]
    Shideler J L, Kelly H N, Avery D E. Multiwall TPS-an emerging concept[J]. Journal of Spacecraft and Rockets, 1982, 19(4):7–8.Google Scholar
  5. [5]
    Blair W, Meaney J E, Rosenthal H A. Fabrication of prepackaged super alloy honeycomb thermal protection system panels[R]. NASA-TP-3257, 1993, (3):5–7.Google Scholar
  6. [6]
    Gorton M P, Shideler J L, Web G L. Static and aero thermal tests of a super alloy honeycomb prepackaged thermal protection system[R]. NASA-TP-3257, 1993, (3):2–3.Google Scholar
  7. [7]
    Cunnington G R, Zierman C A. Performance of multi-layer insulation systems for temperatures to 700K[R]. NASA CR-907, 1967210.Google Scholar
  8. [8]
    Keller K, Hoffmann M, Zorner W, Blumenberg J. Application of high temperature multilayer insulations[J]. Acta Astronautica, 1992, 26(6):451–458.CrossRefGoogle Scholar
  9. [9]
    Kamran Daryabeigi. Thermal analysis and design of multi-layer insulation for reentry aerodynamic heating[R]. AIAA 2001-2834.Google Scholar
  10. [10]
    Kamran Daryabeigi. Effective thermal conductivity of high temperature insulations for reusable launch vehicles[R]. NASA TM-1999-20892.Google Scholar
  11. [11]
    Alan D. Sullins, Kam ran Daryabeigi. Effective thermal conductivity of high porosity open cell nickel foam[R]. AIAA 2001-2819.Google Scholar
  12. [12]
    Kamran Daryabeigi. Heat transfer in high temperature fibrous insulation[R]. AIAA 2002-3332.Google Scholar
  13. [13]
    Kamran Daryabeigi. Analysis and testing of high temperature fibrous insulation for reusable launch vehicles[R]. AIAA 99-1044, 1999.Google Scholar
  14. [14]
    Blosser M L. Development of metallic thermal protection systems for the reusable launch vehicle[R]. NASA Technical Memorandum 110 296, 1996.Google Scholar
  15. [15]
    Yao Caogen, Lü Hongjun, Jia Xinchao, Zhang Xuhu, Wang Qi. Development of metallic thermal protection system[J]. Aerospace Materials & Technology, 2005, 35(2):10–13 (in Chinese).Google Scholar
  16. [16]
    Xia Deshun. Review of metallic thermal protection system for the reusable launch vehicle[J]. Missiles and Space Vehicles, 2002, 256(2):21–26 (in Chinese).Google Scholar
  17. [17]
    Guan Chunlong, Li Yao, He Xiaodong. Research status of structures and materials for reusable TPS[J]. Aerospace Materials & Technology, 2003, 33(6):7–11 (in Chinese).Google Scholar
  18. [18]
    Cao Yi, Cheng Haifeng, Xiao Jiayu, Li Yongqing. An introduction to american metallic TPS research work[J]. Aerospace Materials & Technology, 2003, 33(3):9–12 (in Chinese).Google Scholar
  19. [19]
    Han Jiecai, Chen Guiqing, Meng Songhe, Li Xiaohai. New-typed ARMOR thermal protection systems[J]. Journal of Astronautics, 2004, 25(3):350–353 (in Chinese).Google Scholar
  20. [20]
    Zhao Ying. Development of launch vehicles in 2000[J]. Missiles and Space Vehicles, 2001, 249(1):16–22 (in Chinese).Google Scholar
  21. [21]
    Myers D E, Martin C J, Blosser M L. Parametric weight comparison of current and proposed thermal protection system (TPS) concepts[C]. In: 33rd Thermophysics Conference, AIAA 93-3459, Norfolk, Virginia, 1999.Google Scholar
  22. [22]
    Cowart K, Olds J. Integrating aeroheating and TPS into conceptual RLV design[C]. In: 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, Virginia, 1999.Google Scholar
  23. [23]
    Brewer WD, Bird Keith, Wallace Terryl, Sankaran S A. Alloys and coating development for metallic TPS for reusable launch vehicles[C]. In: 2000 National Space Missile Materials Symposium, San Diego, California, February 28–March 2, 2000.Google Scholar
  24. [24]
    Buckley J D, Ediel D D. Carbon-carbon materials and composites[M]. New York: Noyes Publications, 1993.Google Scholar
  25. [25]
    Savage G. Carbon-carbon composites[M]. London: Chapman & Hall, 1993, 198–209.Google Scholar
  26. [26]
    Walker Jr P L. Carbon em dash an old but new material[J]. Carbon, 1972, 10(4):369–382.Google Scholar
  27. [27]
    Lavruquere S, Elanchard H, Pailler R, et al. Enhancement of the oxidation resistance of interfacial area in C/C composites. Part II. Oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon[J]. Journal of the European Ceramic Society, 2002, 22(7):1011–1021.CrossRefGoogle Scholar
  28. [28]
    Cui Hong, Su Junming, Li Ruizhen, Li Hejun, Kang Mokuang. On improving anti ablation property of multi matrix C/C to withstand 3700K[J]. Journal of Northwestern Polytechnical University, 2000, 18(4):669–673 (in Chinese).Google Scholar
  29. [29]
    Yan Guishen, Wang Jun, Su Junming, Li Hejun, Hao Zhibiao. Influence of refractory carbides synthesized in the modification of matrix on the oxidation resistant performance of C/C composite[J]. Carbon, 2003, 114(2):3–6 (in Chinese).Google Scholar
  30. [30]
    Zhu Xiaoqi, Yang Zheng, Kang Mokuang, Zhang Haitau. Effect of matrix modification on the oxidation resistance of carbon/carbon composites[J]. Acta Materiae Compositae Sinica, 1994, 11(2):107–111 (in Chinese).Google Scholar
  31. [31]
    Luo Ruiying, Li Dongsheng. A new way of enhancement of oxidation resistant properties for carbon/carbon composites[J]. Journal of Astronautics, 1998, 19(1):95–98 (in Chinese).MathSciNetGoogle Scholar
  32. [32]
    Park Soo-jin, Soe Min-kang. The effects of MoSi2 on the oxidation behavior of carbon/carbon composites[J]. Carbon, 2001, 39:1229–1235.CrossRefGoogle Scholar
  33. [33]
    Jashi A, Lee J S. Coating with particulate dispersions for high temperature oxidation protection of carbon and C-C composites[J]. Composites A, 1997, 28(2): 181–189.CrossRefGoogle Scholar
  34. [34]
    Cheng Laifei, Zhang Litong, Han Jintan. Preparation of Si-Mo oxidation protection coating for carbon-carbon composites[J]. High Technology Letters, 1996, 6(4):17–20 (in Chinese).Google Scholar
  35. [35]
    Cheng Laifei, Zhang Litong, Xu Yongdong, Zhou Wancheng. Structure of the oxide film on the siw coating for C/C composites prepared by liquid reaction formation method[J]. Journal of the Chinese Ceramic Society, 1997, 25(5):537–541.Google Scholar
  36. [36]
    Zeng Xierong, Li Hejun, Zhang Jianguo, Hou Yanhong, Yang Zheng. Effect of microstructure and component on oxidation resistance of MoSi2-SiC multilayer ceramic coating[J]. Acta Materiae Compositae Sinica, 2000, 17(2):42–45 (in Chinese).Google Scholar
  37. [37]
    Huang Jianfeng, Zeng Xierong, Li Hejun, et al. Al2O3-mullite-SiC-Al4 SiC4 multi-composition coating for carbon/carbon composites[J]. Materials Letters, 2004, 58(21):2627–2630.CrossRefGoogle Scholar
  38. [38]
    Huang Jianfeng, Zeng Xierong, Li Hejun, et al. ZrO2-SiO2 gradient multi-layer oxidation protective coating for SiC coated carbon/carbon composites[J]. Surface & Coating Technology, 2005, 190(2/3):255–259.CrossRefGoogle Scholar
  39. [39]
    Cairo C A A, Graca M L A, Silva C R M, et al. Functionally gradient ceramic coating for carbon/carbon anti-oxidation protection[J]. Journal of European Ceramic Society, 2001, 21(3):325–329.CrossRefGoogle Scholar
  40. [40]
    Buchanan F J, Little J A. Particulate containing glass sealants for carbon-carbon composites[J]. Carbon, 1996, 31(4):649–654.Google Scholar
  41. [41]
    Strife J R. Ceramic coating for carbon-carbon composites[J]. Ceramic Bulletin, 1988, 67(2):369–374.Google Scholar
  42. [42]
    Wu Tsung-ming, Wu yung-rong. Methodology in exploring the oxidation behavior of carboncarbon composites[J]. Journal of Materials Science, 1994, 29(5):1260–1264.CrossRefGoogle Scholar
  43. [43]
    Westwood M E. Oxidation protection for carbon fiber composites[J]. Journal of Materials Science, 1996, 31(6):1389–1397.CrossRefGoogle Scholar
  44. [44]
    Eckel A J, Bradt R C. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites[J]. Journal of American Ceramic Society, 1990, 73(5):1333–1338.CrossRefGoogle Scholar
  45. [45]
    Rudy E. Compendium of phase diagram data: ternary phase equilibria in transition metal-boron-carbon-silicon systems, part 5[M]. Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio, 1969.Google Scholar
  46. [46]
    Kaufman L, Clougherty E V. Investigation of boride compounds for very high temperature applications[R]. RTD-TRD-N63-4096, Part III, Cambridge, MA: ManLabs Inc, March 1966.Google Scholar
  47. [47]
    Clougherty E V, Kalish D, Peters E T. Research and development of refractory oxidaton resistant diborides[R]. AFML-TR-68-190, Cambridge, MA: ManLabs Inc, 1968.Google Scholar
  48. [48]
    Kaufman L, Nesor H. Stability characterization of refractory materials under high velocity atmospheric flight conditions[R]. Part III, Vol III, AFML-TR-69-84, Cambridge, MA: ManLabs Inc, 1970.Google Scholar
  49. [49]
    Mcclaine L A. Thermodynamic and kinetic studies for a refractory materials program[R]. Report ASD/TDR/62/204, Part I, USA:Jan 1, 1962.Google Scholar
  50. [50]
    Berkowitz-Mattuck J B. Kinetics of oxidation of refractory metals and alloys at 1000–2000°C[R]. Technical Report ASDTDR-62-203, AFML, WPAFB, OH, 1962/1963.Google Scholar
  51. [51]
    Peter T B, Shaffer. An Oxidation resistant boride composition[J]. American Ceramic Society Bulletin, 1962, 41(2):96–99.Google Scholar
  52. [52]
    Pastor H, Meyer R. Study of the effect of additions of silicides of some group IV-VI transition metals on sintering and high-temperature oxidation resistance of titanium and zirconium borides[J]. Revue Internationale des Hautes Tempe ratures et des Refractaires, 1974, 11(1):41–45.Google Scholar
  53. [53]
    Lavrenko V A, Panasyuk A D, Protsenko T G, et al. High-temperature reactions of materials of the ZrB//2-ZrSi//2 system with oxygen[J]. Soviet Powder Metallurgy and Metal, 1982, 21(6):471–473.CrossRefGoogle Scholar
  54. [54]
    Mcclaine L A. Thermodynamic,Kinetic. Studies for a refractory materials program[R]. Report ASD/TDR/62/204, Part II, USA:April, 1963.Google Scholar
  55. [55]
    Brown F H. Stability of titanium diboride and zirconium diboride in air, oxygen, and nitrogen progress report[R]. Progress Report No 20-252, Jet Propulsion Laboratory, Pasadena, CA, 25 Feb 1955.Google Scholar
  56. [56]
    Kuriakose A K, Margrave J L. The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures[J]. J Electrochem Soc, 1964, 111(7):827–831.CrossRefGoogle Scholar
  57. [57]
    Mcclaine L A. Thermodynamic and kinetic studies for a refractory materials program[R]. Report ASD/TDR/62/204, Part III, USA:Jan, 1964.Google Scholar
  58. [58]
    Clougherty E V, Peters E T, Kalish D. Diboride materials[J]. Candidates for Aerospace Applications, 1969, 35(15):297–308.Google Scholar
  59. [59]
    Kaufman L. Boride composite—a new generation of nose cap and leading edge materials for reuseable lifting re-entry systems[C]. In: Proceedings of AIAA Advanced Space Transportation Meeting, AIAA Paper 70-278, NY, 1970.Google Scholar
  60. [60]
    Buckley J D. Static, subsonic, and supersonic oxidation of JT graphite co mposites[R]. Technical Report NASA TN D-4231, NASA, Wash D C, Oct. 1967.Google Scholar
  61. [61]
    Rao G A Rama, Venugopal V. Kinetics and mechanism of the oxidation of ZrC[J]. Journal of Alloys and Compounds, 1994, 206(2):237–242.CrossRefGoogle Scholar
  62. [62]
    Fenter J R. Refractory diborides as engineering materials[J]. SAMPE Quart, 1971, 2(3):1–15.Google Scholar
  63. [63]
    Levinea Stanley R, Opilab Elizabeth J, Halbigc Michael C, Kisera James D, Singhd Mrityunjay, Salema Jonathan A. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society, 2002, 22(14/15):2757–2767.CrossRefGoogle Scholar
  64. [64]
    Monteverde. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures[J]. Corrosion Science, 2005, 47(8): 2020–2033.CrossRefGoogle Scholar
  65. [65]
    Monteverde. Progress in the fabrication of ultra-high-temperature ceramics:’in situ’ synthesis, microstructure and properties of a reactive hot-pressed HfB2-SiC composite[J]. Composites Science and Technology, 2005, 65(11/12):1869–1879.CrossRefGoogle Scholar
  66. [66]
    Bertrand S, Droillard C, Pailler R, et al. TEM structure of (PyC/SiC)n mutilayered interphases in SiC/ SiC composites[J]. Journal of the European Ceramic Scoiety, 2002, 20(1):1–13.CrossRefGoogle Scholar
  67. [67]
    Boitier G, Vicens J, Chermant J L. Understanding the creep behavior of a 2.5D Cf-SiC composite: morphology and microstructure of the as-received material[J]. Materials Science and Engineering, 2000, 279(1/2):73–80.Google Scholar
  68. [68]
    Boitier G, Chermant J L, Vicens J. Understanding the creep behavior of a 2.5D Cf-SiC composite II: experimental specifications and macroscopic mechanical creep responses[J]. Materials Science and Engineering, 2000, 289(1):265–275.CrossRefGoogle Scholar
  69. [69]
    Dalmaz A, Ducretd P, Guerjouma R E, et al. Elastic moduli of a 2.5D Cf/SiC composite[J]. Experimental and Theoretical Estimates Composites Science and Technology, 2000, 60(6):913–925.CrossRefGoogle Scholar
  70. [70]
    Dalmaz A, Ducretd P, Rouby D, et al. Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D C/SiC composite[J]. Composites Science and Technology, 1998, 58(5):693–699.CrossRefGoogle Scholar
  71. [71]
    Halbig M C, Brewer D N, Eckel A J, et al. Stressed oxidation of C/SiC composites[R]. NASA/TM 219972107457, New York: NASA, 1997.Google Scholar
  72. [72]
    Halbig M C, Brewer D N, Eckel A J. Degradation of continuous fiber ceramic matrix composites under constant loaded conditions[R]. TM 220002209681, New York: NASA, 2000.Google Scholar
  73. [73]
    James M S, Larry P Z. Performance of four ceramic matrix composite divergent flap inserts following ground testing on an F110 turbofan engine[J]. Journal of the American Ceramic Society, 2000, 83(7):1727–1738.Google Scholar
  74. [74]
    Kiyoshi S, Hiroki M, Osamu F, et al. Developing interfacial carbon-boron-silicon coatings for silicon nitride-fiber reinforced composites for improved oxidation resistance[J]. Journal of the American Ceramic Society, 2002, 85(7):1815–1822.Google Scholar
  75. [75]
    Schulte J F, Schmidt J, Tamme R, et al. Oxidation behaviour of C/C-SiC coated with SiC-B4C-SiC cordierite oxidation protection system[J]. Materials Science and Engineering A, 2004, 386(1/2):428–434.Google Scholar
  76. [76]
    Zhang Litong, Cheng Laifei, Xu Yongdong. Progress in research work of new CMC-SiC[J]. Aeronautical Manufacturing Technology, 2003, (1):24–32 (in Chinese).Google Scholar
  77. [77]
    Zhang Litong, Cheng Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica, 2007, 24(2):1–6 (in Chinese).Google Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. and Springer-Verlag 2008

Authors and Affiliations

  • Yang Ya-zheng  (杨亚政)
    • 1
    • 2
    Email author
  • Yang Jia-ling  (杨嘉陵)
    • 1
  • Fang Dai-ning  (方岱宁)
    • 3
  1. 1.School of Aeronautic Science and TechnologyBeijing University of Aeronautics and AstronauticsBeijingP. R. China
  2. 2.Institute of MechanicsChinese Academy of SciencesBeijingP. R. China
  3. 3.Department of Engineering MechanicsTsinghua UniversityBeijingP. R. China

Personalised recommendations