Skip to main content
Log in

Delayed stage-structured predator-prey model with impulsive perturbations on predator and chemical control on prey

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

We consider a delayed stage-structured pest management predator-prey system with impulsive transmitting on predator and chemical control on prey. Sufficient conditions of the global attractiveness of the pest-extinction boundary periodic solution and permanence of the system are obtained. We also prove that all solutions of the system are uniformly ultimately bounded. Our results provide reliable tactical basis for practical pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barclay H J. Models for pest control using predator release, habitat management and pesticide release in combineation[J]. J Appl Ecol, 1982, 19(2):337–348.

    Article  Google Scholar 

  2. Paneyya J C. A mathematical model of periodically pulse chemotherapy: tumor recurrence and metastasis in a competition environment[J]. Bull Math Biol, 1996, 58(3):425–447.

    Article  Google Scholar 

  3. d’Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Math Biol, 2002, 179(1):57–72.

    MATH  MathSciNet  Google Scholar 

  4. Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulse[J]. Math Biol, 2002, 149(1):23–36.

    Google Scholar 

  5. Hethcote H. The mathematics of infectious disease[J]. SIAM Review, 2002, 42(4):599–653.

    Article  MathSciNet  Google Scholar 

  6. DeBach P. Biological control of insect pests and weeds[M]. New York: Rheinhold, 1964.

    Google Scholar 

  7. DeBach P, Rosen D. Biological control by natural enemies[M]. 2nd ed, Cambrige: Cambridge University Press, 1991.

    Google Scholar 

  8. Freedman H J. Graphical stability, enrichment, and pest control by a natural enemy[J]. Math Biosci, 1976, 31(3–4):207–225.

    Article  MATH  MathSciNet  Google Scholar 

  9. Grasman J, Van Herwaarden OA, et al. A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control[J]. Math Biosci, 2001, 169(2):207–216.

    Article  MATH  MathSciNet  Google Scholar 

  10. Caltagirone L E, Doutt R L. Global behavior of an SEIRS epidemic model with delays, the history of the vedalia beetle importation to California and its impact on the development of biological control[J]. Ann Rev Entomol, 1989, 34:1–16.

    Article  Google Scholar 

  11. Freedman H I, Gopalsamy K. Global stability in time-delayed single species dynamics[J]. Bull Math Biol, 1986, 48:485–492.

    MATH  MathSciNet  Google Scholar 

  12. Zaghrout A A S, Attalah S H. Analysis of a model of stage-structured population dynamics growth with time state-dependent time delay[J]. Appl Math Comput, 1966, 77:185–194.

    Article  MathSciNet  Google Scholar 

  13. Aiello W G, Freedman H I. A time-delay model of single-species growth with stage-structured[J]. Math Biosci, 1990, 101(2):139–153.

    Article  MATH  MathSciNet  Google Scholar 

  14. Aiello W G. The existence of nonoscillatory solutions to a generalized, nonautonomous, delay logistic equation[J]. J Math Anal Appl, 1990, 149(1):114–123.

    Article  MATH  MathSciNet  Google Scholar 

  15. Rosen G. Time delays produced by essential nonlinearity in population growth models[J]. Bull Math Biol, 1987, 49(2):253–255.

    MATH  MathSciNet  Google Scholar 

  16. Wangersky P J, Cunningham W J. On time large equations of growth[J]. Proc Nat Acad Sci USA, 1956, 42(9):699–702.

    Article  MATH  Google Scholar 

  17. Fisher M E, Goh B S. Stability results for delay-recruitment models in population dynamics[J]. J Math Biol, 1984, 19:117–156.

    Article  MathSciNet  Google Scholar 

  18. Wang W, Global behavior of an SEIRS epidemic model with delays[J]. Appl Math Letters, 2002, 15:423–428.

    Article  MATH  Google Scholar 

  19. Xiao Y N, Chen L S. A ratio-depengent predator-prey model with disease in the prey[J]. Appl Math Comput, 2002, 131(2–3):397–414.

    Article  MATH  MathSciNet  Google Scholar 

  20. Xiao Y N, Chen L S. An SIS epidemic model with stage structure and a delay[J]. Acta Math Appl English Series, 2002, 16:607–618.

    Article  MathSciNet  Google Scholar 

  21. Xiao Y N, Chen L S, Bosh F V D. Dynamical behavior for stage-structured SIR infectious disease model[J]. Nonlinear Analysis: RWA, 2002, 3:175–190.

    Article  MATH  Google Scholar 

  22. Xiao Y N, Chen L S. On an SIS epidemic model with stage-structure[J]. J of System Science and Complexity, 2003, 16(2):275–288.

    MathSciNet  Google Scholar 

  23. Lu Z H, Gang S J, Chen L S. Analysis of an SI epidemic with nonlinear transmission and stage structure[J]. Acta Math Science, 2003, 4:440–446.

    Google Scholar 

  24. Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state dependent time delay[J]. SIAM J Appl Math, 1992, 52(3):855–869.

    Article  MATH  MathSciNet  Google Scholar 

  25. Murray J D. Mathematical Biology[M]. Berlin Heidelberg, New York: Springer-Verlag, 1989.

    Google Scholar 

  26. Kuang Yang. Delay differential equation with application in population dynamics[M]. NY: Academic Press, 1987, 67–70.

    Google Scholar 

  27. Cull P. Global stability for population models[J]. Bull Math Biol, 1981, 43:47–58.

    MATH  MathSciNet  Google Scholar 

  28. Liu Xianning, Chen Lansun. Compex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J]. Chaos, Soliton and Fractals, 2003, 16(6):311–320.

    Article  MATH  Google Scholar 

  29. Lakshmikantham V, Bainov D D, Simeonov P. Theory of impulsive differential equations[M]. Singapor: World scientific, 1989.

    Google Scholar 

  30. Bainov D, Simeonov P. Impulsive differential equations: periodic solutions and applications[M]. Longman, 1993.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Jian-jun  (焦建军).

Additional information

Communicated by GUO Xing-ming

Project supported by the National Natural Science Foundation of China (No. 10471117) and the Leading Academic Discipline Project of Guizhou Province

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, Jj., Chen, Ls. Delayed stage-structured predator-prey model with impulsive perturbations on predator and chemical control on prey. Appl. Math. Mech.-Engl. Ed. 28, 1679–1689 (2007). https://doi.org/10.1007/s10483-007-1215-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-1215-y

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation