Skip to main content
Log in

Closed form stress distribution in 2D elasticity for all boundary conditions

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper applies a Hamiltonian method to study analytically the stress distributions of orthotropic two-dimensional elasticity in (x, z) plane for arbitrary boundary conditions without beam assumptions. It is a method of separable variables for partial differential equations using displacements and their conjugate stresses as unknowns. Since coordinates (x, z) can not be easily separated, an alternative symplectic expansion is used. Similar to the Hamiltonian formulation in classical dynamics, we treat the x coordinate as time variable so that z becomes the only independent coordinate in the Hamiltonian matrix differential operator. The exponential of the Hamiltonian matrix is symplectic. There are homogenous solutions with constants to be determined by the boundary conditions and particular integrals satisfying the loading conditions. The homogenous solutions consist of the eigen-solutions of the derogatory zero eigenvalues (zero eigen-solutions) and that of the well-behaved nonzero eigenvalues (nonzero eigen-solutions). The Jordan chains at zero eigenvalues give the classical Saint-Venant solutions associated with averaged global behaviors such as rigid-body translation, rigid-body rotation or bending. On the other hand, the nonzero eigen-solutions describe the exponentially decaying localized solutions usually ignored by Saint-Venant’s principle. Completed numerical examples are newly given to compare with established results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J]. J Appl Mech-T ASME, 1952, 19(4):526–528.

    Google Scholar 

  2. Timoshenko S P, Goodier J N. Theory of elasticity[M]. New York: McGraw-Hill, 1970.

    Google Scholar 

  3. Gregory R D. The traction boundary-value problem for the elastostatic semi-infinite stripexistence of solution, and completeness of the Papkovich-Fadle eigenfunctions[J]. J Elasticity, 1980, 10(3):295–327.

    Article  MATH  MathSciNet  Google Scholar 

  4. Gregory R D, Gladwell I. The cantilever beam under tension, bending or flexure at infinity[J]. J Elasticity, 1982, 12(4):317–343.

    Article  MATH  MathSciNet  Google Scholar 

  5. Gregory R D, Wan F Y M. Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory[J]. J Elasticity, 1984, 14(1):27–64.

    MATH  MathSciNet  Google Scholar 

  6. Horgan C O, Simmonds J G. Asymptotic analysis of an end-loaded, transversely isotropic, elastic, semi-infinite strip weak in shear[J]. Int J Solids Struct, 1991, 27(15):1895–1914.

    Article  MATH  MathSciNet  Google Scholar 

  7. Choi I, Horgan C O. Saint-Venants principle and end effects in anisotropic elasticity[J]. J Appl Mech-T ASME, 1977, 44(3):424–430.

    MATH  Google Scholar 

  8. Lin Y H, Wan F Y M. Bending and flexure of semi-infinite cantilevered orthotropic strips[J]. Comput Struct, 1990, 35(4):349–359.

    Article  MATH  Google Scholar 

  9. Lin Y H, Wan F Y M. Semi-infinite orthotropic cantilevered strips and the foundations of plate theories[J]. Stud Appl Math, 1990, 82(3):217–244.

    MATH  MathSciNet  Google Scholar 

  10. Savoia M, Tullini N. Beam theory for strongly orthotropic materials[J]. Int J Solids Struct, 1996, 33(17):2459–2484.

    Article  MATH  Google Scholar 

  11. Tullini N, Savoia M. Logarithmic stress singularities at clamped-free corners of a cantilever orthotropic beam under flexure[J]. Compos Struct, 1995, 32(1/4):659–666.

    Article  Google Scholar 

  12. Leung A Y T. An improved 3rd-order beam theory[J]. J Sound Vib, 1990, 142(3):527–528.

    Article  Google Scholar 

  13. Leung A Y T, Chan J K W. Null space solution of Jordan chains for derogatory eigenproblems[J]. J Sound Vib, 1999, 222(4):679–690.

    Article  Google Scholar 

  14. Leung A Y T, Su R K L. Mode-I crack problems by fractal 2-level finite-element methods[J]. Eng Fract Mech, 1994, 48(6):847–856.

    Article  Google Scholar 

  15. Leung A Y T, Su R K L. Order of the singular stress fields of through-thickness cracks[J]. Int J Fracture, 1996, 75(1):85–93.

    Article  Google Scholar 

  16. Leung A Y T, Xu X S, Gu Q, Leung C T O, Zheng J J. The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion[J]. Int J Numer Meth Eng, 2007, 69(11):2381–2408.

    Article  MathSciNet  Google Scholar 

  17. Levinson M. A new rectangular beam theory[J]. J Sound Vib, 1981, 74(1):81–87.

    Article  MATH  Google Scholar 

  18. Heyliger P R, Reddy J N. A higher order beam finite element for bending and vibration problems[J]. J Sound Vib, 1988, 126(2):309–326.

    Article  Google Scholar 

  19. Spence D A. A class of biharmonic end-strip problems arising in elasticity and stokes flow[J]. Ima J Appl Math, 1983, 30(2):107–139.

    Article  MATH  MathSciNet  Google Scholar 

  20. Mielke A. On Saint-Venant’s problem for an elastic strip[J]. P Roy Soc Edinb A, 1988, 110(1/2):161–181.

    MathSciNet  MATH  Google Scholar 

  21. Zhong W X, Lin J H, Zhu J P. Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetrical matrices[J]. Comput Struct, 1994, 52(5):999–1009.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhong W X, Williams F W. Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix[J]. Comput Struct, 1993, 49(4):749–750.

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhong WX, Williams F W. On the direct solution of wave-propagation for repetitive structures[J]. J Sound Vib, 1995, 181(3):485–501.

    Article  Google Scholar 

  24. Xu X S, Zhong W X, Zhang H W. The Saint-Venant problem and principle in elasticity[J]. Int J Solids Struct, 1997, 34(22):2815–2827.

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang H W, Zhong W X, Li Y P. Stress singularity analysis at crack tip on bi-material interfaces based on Hamiltonian principle[J]. Acta Mech Solida Sin, 1996, 9(2):124–138.

    Article  Google Scholar 

  26. Yao W A, Zhong W X. Symplectic elasticity[M]. Beijing: Higher Education Press, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leung A. Y. T.  (梁以德).

Additional information

Communicated by GUO Xing-ming

Project supported by the Research Grant Council of Hong Kong (No. CERG1157/06)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, A.Y.T., Zheng, Jj. Closed form stress distribution in 2D elasticity for all boundary conditions. Appl. Math. Mech.-Engl. Ed. 28, 1629–1642 (2007). https://doi.org/10.1007/s10483-007-1210-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-1210-z

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation