Advertisement

Applied Mathematics and Mechanics

, Volume 28, Issue 9, pp 1259–1271 | Cite as

Global dynamics behaviors for new delay SEIR epidemic disease model with vertical transmission and pulse vaccination

  • Meng Xin-zhu  (孟新柱)Email author
  • Chen Lan-sun  (陈兰荪)
  • Song Zhi-tao  (宋治涛)
Article

Abstract

A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free’ periodic solution is obtained, further, it is shown that the ‘infection-free’ periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.

Key words

permanence pulse vaccination horizontal and vertical transmission delays global attractivity 

Chinese Library Classification

O175 

2000 Mathematics Subject Classification

92D30 34K20 34K25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Michael Y Li, Gaef John R, Wang Liancheng, et al. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2):191–213.zbMATHCrossRefGoogle Scholar
  2. [2]
    Michael Y Li, Hall Smith, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission[J]. SIAM Journal on Applied Mathematics, 2001, 62(1):58–69.zbMATHCrossRefGoogle Scholar
  3. [3]
    Al-Showaikh FNM, Twizell E H. One-dimensional measles dynamics[J]. Applied Mathematics and Computation, 2004, 152(1):169–194.zbMATHCrossRefGoogle Scholar
  4. [4]
    Greenhalgh D. Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J]. Mathematical and Computer Modelling, 1997, 25(5):85–107.zbMATHCrossRefGoogle Scholar
  5. [5]
    Li Guihua, Jin Zhen. Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period[J]. Chaos, Solitons and Fractals, 2005, 25(5):1177–1184.zbMATHCrossRefGoogle Scholar
  6. [6]
    Hethcote H W, Stech H W, van den Driessche P. Periodicity and stability in epidemic models: a survey[M]. In: Differential Equations and Applications in Ecology, Epidemics, and Population Problems, New York: Academic Press, 1981, 65–85.Google Scholar
  7. [7]
    d’Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematical Biosciences, 2002, 179(1):57–72.zbMATHCrossRefGoogle Scholar
  8. [8]
    d’Onofrio Alberto. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J]. Applied Mathematics and Computation, 2004, 151(1):181–187.zbMATHCrossRefGoogle Scholar
  9. [9]
    Fine P M. Vectors and vertical transmission: an epidemiologic perspective[J]. Annals of the New York Academy of Sciences, 1975, 266(11):173–194.CrossRefGoogle Scholar
  10. [10]
    Busenberg S, Cooke K L, Pozio M A. Analysis of a model of a vertically transmitted disease[J]. Journal of Mathematical Biology, 1983, 17(3):305–329.zbMATHCrossRefGoogle Scholar
  11. [11]
    Busenberg S N, Cooke K L. Models of vertical transmitted diseases with sequenty-continuous dynamics[M]. In: Lakshmicantham V (ed). Nonlinear Phenomena in Mathematical Sciences, New York: Academic Press, 1982, 179–187.Google Scholar
  12. [12]
    Cook K L, Busenberg S N. Vertical transmission diseases[M]. In: Lakshmicantham V (ed). Nonlinear Phenomena in Mathematical Sciences, New York: Academic Press, 1982, 189.Google Scholar
  13. [13]
    Lu Zhonghua, Chi Xuebin, Chen Lansun. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]. Mathematical and Computer Modelling, 2002, 36(9):1039–1057.zbMATHCrossRefGoogle Scholar
  14. [14]
    d’Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Applied Mathematics Letters, 2005, 18(7):729–732.zbMATHCrossRefGoogle Scholar
  15. [15]
    Nokes D, Swinton J. The control of childhood viral infections by pulse vaccination[J]. IMA Journal Mathematics Applied Biology Medication, 1995, 12(1):29–53.zbMATHCrossRefGoogle Scholar
  16. [16]
    Zeng Guangzhao, Chen Lansun. Complexity and asymptotical behavior of a SIRS epidemic model with proportional implse vaccination[J]. Advances in Complex Systems, 2005, 8(4):419–431.zbMATHCrossRefGoogle Scholar
  17. [17]
    van den Driessche P, Watmough J. A simple SIS epidemic model with a backward bifurcation[J]. Journal of Mathematical Biology, 2000, 40(6):525–540.zbMATHCrossRefGoogle Scholar
  18. [18]
    van den Driessche P, Watmough J. Epidemic solutions and endemic catastrophes[J]. Fields Institute Communications, 2003, 36(1):247–257.Google Scholar
  19. [19]
    Alexander M E, Moghadas S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1):75–96.zbMATHCrossRefGoogle Scholar
  20. [20]
    Takeuchi Yasuhiro, Ma Wanbiao, Beretta Edoardo. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis, 2000, 42(6):931–947.CrossRefGoogle Scholar
  21. [21]
    Ma Wanbiao, Song Mei, Takeuchi Yasuhiro. Global stability of an sir epidemic model with time delay[J]. Applied Mathematics Letters, 2004, 17(10):1141–1145.zbMATHCrossRefGoogle Scholar
  22. [22]
    Jin Zhen, Ma Zhien. The stability of an SIR epidemic model with time delays [J]. Mathematical Biosciences and Engineering, 2006, 3(1):101–109.zbMATHGoogle Scholar
  23. [23]
    Beretta Edoardo, Hara Tadayuki, Ma Wangbao, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay[J]. Nonlinear Analysis, 2001, 47(6):4107–4115.zbMATHCrossRefGoogle Scholar
  24. [24]
    Lakshmikantham V, Bainov D, Simeonov P. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.Google Scholar
  25. [25]
    Liu Xinzhi, Teo Kok Lay, Zhang Yi. Absolute stability of impulsive control systems with time delay[J]. Nonlinear Analysis, 2005, 62(3):429–453.zbMATHCrossRefGoogle Scholar
  26. [26]
    Kuang Yang. Delay differential equations with applications in population dynamics[M]. San Diego, CA: Academic Press, INC, 1993.Google Scholar
  27. [27]
    Cooke K L, van den Driessche P. Analysis of an SEIRS epidemic model with two delays[J]. Journal of Mathematical Biology, 1996, 35(2):240–260.zbMATHCrossRefGoogle Scholar
  28. [28]
    Wang Wendi. Global behavior of an SEIRS epidemic model with time delays[J]. Applied Mathematics Letters, 2002, 15(4):423–428.zbMATHCrossRefGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Meng Xin-zhu  (孟新柱)
    • 1
    • 2
    Email author
  • Chen Lan-sun  (陈兰荪)
    • 2
  • Song Zhi-tao  (宋治涛)
    • 1
  1. 1.College of ScienceShandong University of Science and TechnologyQingdaoP. R. China
  2. 2.Department of Applied MathematicsDalian University of TechnologyDalianP. R. China

Personalised recommendations