Skip to main content

Advertisement

Log in

Global dynamics behaviors for new delay SEIR epidemic disease model with vertical transmission and pulse vaccination

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A robust SEIR epidemic disease model with a profitless delay and vertical transmission is formulated, and the dynamics behaviors of the model under pulse vaccination are analyzed. By use of the discrete dynamical system determined by the stroboscopic map, an ‘infection-free’ periodic solution is obtained, further, it is shown that the ‘infection-free’ periodic solution is globally attractive when some parameters of the model are under appropriate conditions. Using the theory on delay functional and impulsive differential equation, the sufficient condition with time delay for the permanence of the system is obtained, and it is proved that time delays, pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is ‘profitless’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Michael Y Li, Gaef John R, Wang Liancheng, et al. Global dynamics of a SEIR model with varying total population size[J]. Mathematical Biosciences, 1999, 160(2):191–213.

    Article  MATH  Google Scholar 

  2. Michael Y Li, Hall Smith, Wang Liancheng. Global dynamics of an SEIR epidemic model with vertical transmission[J]. SIAM Journal on Applied Mathematics, 2001, 62(1):58–69.

    Article  MATH  Google Scholar 

  3. Al-Showaikh FNM, Twizell E H. One-dimensional measles dynamics[J]. Applied Mathematics and Computation, 2004, 152(1):169–194.

    Article  MATH  Google Scholar 

  4. Greenhalgh D. Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity[J]. Mathematical and Computer Modelling, 1997, 25(5):85–107.

    Article  MATH  Google Scholar 

  5. Li Guihua, Jin Zhen. Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period[J]. Chaos, Solitons and Fractals, 2005, 25(5):1177–1184.

    Article  MATH  Google Scholar 

  6. Hethcote H W, Stech H W, van den Driessche P. Periodicity and stability in epidemic models: a survey[M]. In: Differential Equations and Applications in Ecology, Epidemics, and Population Problems, New York: Academic Press, 1981, 65–85.

    Google Scholar 

  7. d’Onofrio Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematical Biosciences, 2002, 179(1):57–72.

    Article  MATH  Google Scholar 

  8. d’Onofrio Alberto. Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times[J]. Applied Mathematics and Computation, 2004, 151(1):181–187.

    Article  MATH  Google Scholar 

  9. Fine P M. Vectors and vertical transmission: an epidemiologic perspective[J]. Annals of the New York Academy of Sciences, 1975, 266(11):173–194.

    Article  Google Scholar 

  10. Busenberg S, Cooke K L, Pozio M A. Analysis of a model of a vertically transmitted disease[J]. Journal of Mathematical Biology, 1983, 17(3):305–329.

    Article  MATH  Google Scholar 

  11. Busenberg S N, Cooke K L. Models of vertical transmitted diseases with sequenty-continuous dynamics[M]. In: Lakshmicantham V (ed). Nonlinear Phenomena in Mathematical Sciences, New York: Academic Press, 1982, 179–187.

    Google Scholar 

  12. Cook K L, Busenberg S N. Vertical transmission diseases[M]. In: Lakshmicantham V (ed). Nonlinear Phenomena in Mathematical Sciences, New York: Academic Press, 1982, 189.

    Google Scholar 

  13. Lu Zhonghua, Chi Xuebin, Chen Lansun. The effect of constant and pulse vaccination on SIR epidemic model with horizontal and vertical transmission[J]. Mathematical and Computer Modelling, 2002, 36(9):1039–1057.

    Article  MATH  Google Scholar 

  14. d’Onofrio Alberto. On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J]. Applied Mathematics Letters, 2005, 18(7):729–732.

    Article  MATH  Google Scholar 

  15. Nokes D, Swinton J. The control of childhood viral infections by pulse vaccination[J]. IMA Journal Mathematics Applied Biology Medication, 1995, 12(1):29–53.

    Article  MATH  Google Scholar 

  16. Zeng Guangzhao, Chen Lansun. Complexity and asymptotical behavior of a SIRS epidemic model with proportional implse vaccination[J]. Advances in Complex Systems, 2005, 8(4):419–431.

    Article  MATH  Google Scholar 

  17. van den Driessche P, Watmough J. A simple SIS epidemic model with a backward bifurcation[J]. Journal of Mathematical Biology, 2000, 40(6):525–540.

    Article  MATH  Google Scholar 

  18. van den Driessche P, Watmough J. Epidemic solutions and endemic catastrophes[J]. Fields Institute Communications, 2003, 36(1):247–257.

    Google Scholar 

  19. Alexander M E, Moghadas S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1):75–96.

    Article  MATH  Google Scholar 

  20. Takeuchi Yasuhiro, Ma Wanbiao, Beretta Edoardo. Global asymptotic properties of a delay SIR epidemic model with finite incubation times[J]. Nonlinear Analysis, 2000, 42(6):931–947.

    Article  Google Scholar 

  21. Ma Wanbiao, Song Mei, Takeuchi Yasuhiro. Global stability of an sir epidemic model with time delay[J]. Applied Mathematics Letters, 2004, 17(10):1141–1145.

    Article  MATH  Google Scholar 

  22. Jin Zhen, Ma Zhien. The stability of an SIR epidemic model with time delays [J]. Mathematical Biosciences and Engineering, 2006, 3(1):101–109.

    MATH  Google Scholar 

  23. Beretta Edoardo, Hara Tadayuki, Ma Wangbao, et al. Global asymptotic stability of an SIR epidemic model with distributed time delay[J]. Nonlinear Analysis, 2001, 47(6):4107–4115.

    Article  MATH  Google Scholar 

  24. Lakshmikantham V, Bainov D, Simeonov P. Theory of impulsive differential equations[M]. Singapore: World Scientific, 1989.

    Google Scholar 

  25. Liu Xinzhi, Teo Kok Lay, Zhang Yi. Absolute stability of impulsive control systems with time delay[J]. Nonlinear Analysis, 2005, 62(3):429–453.

    Article  MATH  Google Scholar 

  26. Kuang Yang. Delay differential equations with applications in population dynamics[M]. San Diego, CA: Academic Press, INC, 1993.

    Google Scholar 

  27. Cooke K L, van den Driessche P. Analysis of an SEIRS epidemic model with two delays[J]. Journal of Mathematical Biology, 1996, 35(2):240–260.

    Article  MATH  Google Scholar 

  28. Wang Wendi. Global behavior of an SEIRS epidemic model with time delays[J]. Applied Mathematics Letters, 2002, 15(4):423–428.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Xin-zhu  (孟新柱).

Additional information

Communicated by CHEN Li-qun

Project supported by the National Natural Science Foundation of China (No. 10471117)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Xz., Chen, Ls. & Song, Zt. Global dynamics behaviors for new delay SEIR epidemic disease model with vertical transmission and pulse vaccination. Appl Math Mech 28, 1259–1271 (2007). https://doi.org/10.1007/s10483-007-0914-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-0914-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation