Advertisement

Wave equations and reaction-diffusion equations with several nonlinear source terms

  • Liu Ya-cheng  (刘亚成)
  • Xu Run-zhang  (徐润章)Email author
  • Yu Tao  (于涛)
Article

Abstract

The initial boundary value problem of wave equations and reaction-diffusion equations with several nonlinear source terms in a bounded domain is studied by potential well method. The invariance of some sets under the flow of these problems and the vacuum isolation of solutions are obtained by introducing a family of potential wells. Then the threshold result of global existence and nonexistence of solutions are given. Finally, the problem with critical initial conditions are discussed.

Key words

wave equations reaction-diffusion equations potential wells global existence nonexistence 

Chinese Library Classification

O175.26 O175.27 

2000 Mathematics Subject Classification

35L70 35K57 

References

  1. [1]
    Sattinger D H. On global solution of nonlinear hyperbolic equations[J]. Arch Rat Mech Anal, 1968, 30:148–172.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Payne L E, Sattinger D H. Sadle points and instability of nonlinear hyperbolic equations[J]. Israel J Math, 1975, 22:273–303.MathSciNetGoogle Scholar
  3. [3]
    Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math Japan, 1972, 17:173–193.zbMATHMathSciNetGoogle Scholar
  4. [4]
    Liu Yacheng. On potential wells and vacuum isolating of solutions for semilinear wave equations[J]. Journal of Differential Equations, 2003, 192(1):155–169.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Liu Yacheng, Zhao Junsheng. Multidimensional viscoelasticity equations with nonlinear damping and source terms[J]. Nonlinear Analysis, 2004, 56(6):851–865.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Liu Yacheng, Zhao Junsheng. Nonlinear parabolic equations with critical initial conditions J(u 0) = d or I(u 0) = 0[J]. Nonlinear Analysis, 2004, 58(7/8):873–883.zbMATHMathSciNetGoogle Scholar
  7. [7]
    Tsutsumi M. Existence and nonexistence of global solutions for nonlinear parabolic equations[J]. Publ RTMS, 1972/73, 8:211–229.CrossRefMathSciNetGoogle Scholar
  8. [8]
    Lions J L. Quelques méthodes de résolution des problémes aux limites non linéaires[M]. Paris: Dunod Gauthier-Villars, 1969.Google Scholar
  9. [9]
    Ikehata R. Some remarks on the wave equations with nonlinear damping and source terms[J]. Nonlinear Analysis, 1996, 27(10):1165–1175.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Nakao N, Ono K. Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations[J]. Math Z, 1993, 214(2):325–342.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    Marcelo M, Cavalcanti, Valéria N, Domingos Cavalcanti. Existence and asymptotic stability for evolution problems on manifolds with damping and source terms[J]. J Math Anal Appl, 2004, 291(1):109–127.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Marcelo M, Cavalcanti, Valéria N, Domingos Cavalcanti, Patrick Martinez. Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term[J]. J Differential Equations, 2004, 203(1):119–158.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Zhang J. On the standing wave in coupled non-linear Klein-Gordon equations[J]. Mathematical Methods in the Applied Sciences, 2003, 26(1):11–25.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    Vitillaro E. A potential well theory for the wave equation with nonlinear source and boundary damping terms[J]. Glasgow Mathematical Journal, 2002, 44(3):375–395.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Ono K. On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation[J]. Mathematical Methods in the Applied Sciences, 1997, 20(2):151–177.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Liu Ya-cheng  (刘亚成)
    • 1
  • Xu Run-zhang  (徐润章)
    • 1
    Email author
  • Yu Tao  (于涛)
    • 1
  1. 1.College of ScienceHarbin Engineering UniversityHarbinP. R. China

Personalised recommendations