Skip to main content
Log in

Elastodynamic analysis of anisotropic liquid-saturated porous medium due to mechanical sources

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Elastodynamic analysis of an anisotropic liquid-saturated porous medium is made to study a deformation problem of a transversely isotropic liquid-saturated porous medium due to mechanical sources. Certain physical problems are of the nature, in which the deformation takes place only in one direction, e.g., the problem relating to deformed structures and columns. In soil mechanics, an assumption of only vertical subsidence is often invoked and this leads to the one dimensional model of poroelasticity. By considering a model of one-dimensional deformation of the anisotropic liquid-saturated porous medium, variations in disturbances are observed with reference to time and distance. The distributions of displacements and stresses are affected due to the anisotropy of the medium, and also due to the type of sources causing the disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armero F, Callari C. An analysis of strong discontinuities in a saturated poroelastic solid[J]. Int J Numer Methods Engrg, 1999, 46(10):1673–1698.

    Article  MATH  MathSciNet  Google Scholar 

  2. Fellah Z E A, Depollier C. Transient acoustic wave propagation in rigid porous media: a time domain approach[J]. J Acoust Soc Amer, 2000, 107(2):683–688.

    Article  Google Scholar 

  3. Tajjudin M, Reddy G N. Existance of stoneley waves at an unbounded interface between a poroelastic solid lying over an elastic solid[J]. Bull Cal Math Soc, 2002, 94(2):107–112.

    Google Scholar 

  4. Schanz M, Pryl D. Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua[J]. Int J Solids Structures, 2004, 41(15):4047–4073.

    Article  MATH  Google Scholar 

  5. Tajjudin M, Reddy G N. Effect of boundaries on the dynamic interaction of a liquid-filled porous layer and a supporting continuum[J]. Sadhana, 2005, 30(4):527–535.

    Article  MathSciNet  Google Scholar 

  6. Santos J E, Ravazzoli C L, Geiser J. On the static and dynamic behavior of fluid saturated composite porous solids: a homogenization approach[J]. Int J Solids Structures, 2006, 43(5):1224–1238.

    Article  MATH  MathSciNet  Google Scholar 

  7. Tajjudin M, Shah S A. Circumferential waves of infinite hollow poroelastic cylinders[J]. J Applied Mechanics, 2006, 73(4):705–708.

    Article  Google Scholar 

  8. Chen S L, Chen L Z, Pan E. Three-dimensional time-harminic Green’s functions of saturated soil under burried loading[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(5):448–462.

    Article  Google Scholar 

  9. Sharma M D, Gogna M L. Wave propagation in anisotropic liquid-saturated porous solids[J]. J Acoust Soc Am, 1991, 90(2):1068–1073.

    Article  Google Scholar 

  10. Sun F, Banks-Lee P, Peng H. Wave propagation theory in anisotropic periodically layered fluid-saturated porous media[J]. J Acoust Soc Amer, 1993, 93(3):1277–1285.

    Article  Google Scholar 

  11. Dey S, Sarkar M G. Torsional surface waves in an initially stressed anisotropic porous medium[J]. J Engg Mech, 2002, 128(2):184–189.

    Article  Google Scholar 

  12. Altay G, Dokmeci M C. On the equations governing the motion of an anisotropic poroelastic material[J]. Proc of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462(2072):2373–2396.

    Article  MATH  MathSciNet  Google Scholar 

  13. He F S, Huang Y. Basic equations of transversely isotropic fluid-saturated poroelastic media[J]. Chinese J Geophysics, 2007, 50(1):131–137.

    Google Scholar 

  14. Vgenopoulou I, Beskos D E. Dynamic poroelastic column and borehole problem analysis[J]. Soil Dynamics and Earthquake Engineering, 1984, 11(66):335–345.

    Google Scholar 

  15. Cui L, Cheng A H D, Kaliakin V N, Abousleiman Y, Roegiers J C. Finite element analysis of anisotropic poroelasticity: a generalized Mandel’s problem and an inclined bore hole problem[J]. Int J Numer Anal Methods Geomech, 1996, 20:381–401.

    Article  MATH  Google Scholar 

  16. Schanz M, Cheng A H D. Transient wave propagation in a one-dimensional poroelastic column[J]. Acta Mechanica, 2000, 145(1/4):1–18.

    Article  MATH  Google Scholar 

  17. Schanz M, Cheng A H D. Dynamic analysis of a one-dimensional poroviscoelastic column[J]. J Appl Mech Trans ASME, 2001, 68(2):192–198.

    Article  MATH  Google Scholar 

  18. Stover S C, Ge S, Screaton E J. A one-dimensional analytically based approach for studying poroplastic and viscous consolidation: application to Woodlark Basin, Papua New Guinea[J]. J Geophysics Research, 2003, 108(B9):EMP11 1–14.

    Google Scholar 

  19. Zhang J, Roegiers J C, Bai M. Dual porosity elastoplastic analysis of non-isothermal one-dimensional consolidation[J]. Geotechnical and Geological Engineering, 2004, 22(4):589–610.

    Article  Google Scholar 

  20. Biot M A. The theory of propagation of elastic waves in a fluid saturated porous solid[J]. J Acoust Soc Amer, 1956, 28(2):168–191.

    Article  MathSciNet  Google Scholar 

  21. Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J]. J Appl Phys, 1956, 27(5):459–467.

    Article  MathSciNet  Google Scholar 

  22. Honig G, Hirdes U. A method for the numerical inversion of the Laplace transform[J]. J Comput Appl Math, 1984, 10:113–132.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Kumar.

Additional information

Communicated by GUO Xing-ming

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Miglani, A. & Garg, N.R. Elastodynamic analysis of anisotropic liquid-saturated porous medium due to mechanical sources. Appl Math Mech 28, 1049–1059 (2007). https://doi.org/10.1007/s10483-007-0807-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-0807-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation