Advertisement

Applied Mathematics and Mechanics

, Volume 28, Issue 7, pp 973–980 | Cite as

Alternating segment explicit-implicit scheme for nonlinear third-order KdV equation

  • Qu Fu-li  (曲富丽)
  • Wang Wen-qia  (王文洽)Email author
Article

Abstract

A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.

Key words

KdV equation intrinsic parallelism alternating segment explicit-implicit difference scheme unconditionally linear stable 

Chinese Library Classification

O241 

2000 Mathematics Subject Classification

65M06 65M12 65Y05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yang Bojun, Zhao Yufang. The advanced mathematics and physics methods[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2003 (in Chinese).Google Scholar
  2. [2]
    Zabusky N J, Kruskal M D. Interaction of “solitions” in a collisionless plasma and the recurrence of initial states[J]. Physical Rev Lett, 1965, 15(6):240–243.CrossRefGoogle Scholar
  3. [3]
    Osborne A R. Nonlinear fourier analysis for the infinite-interval Korteweg-de Vries equation I: An algorithm for direct scattering transform[J]. J Comput Phys, 1991, 94(2):284–313.zbMATHCrossRefGoogle Scholar
  4. [4]
    Peng Dianyun. Multipoint scheme methods of the KdV equations[J]. Numerical Computation and Application in Computer, 1998, 19(4):241–251 (in Chinese).Google Scholar
  5. [5]
    Djidjeli K, Price W G, Twizell E H, Wang Y. Numerical methods for the solution of the third-and fifth-order dispersive Korteweg-de Vries equations[J]. J Comput Appl Math, 1995, 58(3):307–336.zbMATHCrossRefGoogle Scholar
  6. [6]
    Feng Baofeng, Taketomo Mitsui. A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations[J]. J Comput Appl Math, 1998, 90(1):95–116.zbMATHCrossRefGoogle Scholar
  7. [7]
    Evans D J, Abdullah A R B. Group explicit methods for parabolic equations[J]. Intern J Comput Math, 1983, 14(1):73–105.zbMATHCrossRefGoogle Scholar
  8. [8]
    Zhang Baolin, Li Wenzhi. On alternating segment Crank-Nicolson scheme[J]. Parallel Computing, 1994, 20(6):897–902.zbMATHCrossRefGoogle Scholar
  9. [9]
    Yuan Guangwei, Shen Longjun, Zhou Yulin. Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional parabolic systems[J]. Inc Numer Methods Partial Diffential Eq, 1999, 15(6):25–636.Google Scholar
  10. [10]
    Zhu Shaohong, Zhao J. The alternating segment explicit-implicit method for the dispersive equation[J]. Applied Mathematics Letters, 2001, 14(6):657–662.zbMATHCrossRefGoogle Scholar
  11. [11]
    Zhu Shaohong, Yuan Guangwei. Difference schemes with intrinsic parallelism for dispersive equation[J]. Acta Mathematics Applicatae Sinica, 2003, 26(3):495–503 (in Chinese).zbMATHGoogle Scholar
  12. [12]
    Kellogg R B. An alternating direction method for operator equations[J]. J Soc Indust Appl Math, 1964, 12(4):848–854.zbMATHCrossRefGoogle Scholar
  13. [13]
    Li Pingwah. On the numerical study of the KdV equation by the semi-implicit and leap-frog method[J]. Computer Physics Communications, 1995, 88(2/3):121–127.zbMATHCrossRefGoogle Scholar
  14. [14]
    Djidjeli K, Price W G, Temarel P, Twizell E H. A linerized implicit pseudo-spectral method for certain non-linear water wave qeuations[J]. Commun Numer Meth Engng, 1998, 14(10):977–993.zbMATHCrossRefGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Qu Fu-li  (曲富丽)
    • 1
  • Wang Wen-qia  (王文洽)
    • 2
    Email author
  1. 1.Accounting DepartmentWomen’s Academy at ShandongJinanP. R. China
  2. 2.School of Mathematics and System ScienceShandong UniversityJinanP. R. China

Personalised recommendations