Applied Mathematics and Mechanics

, Volume 28, Issue 7, pp 873–881 | Cite as

Lateral resonances in initial stressed 1–3 piezocomposites

  • Zhang Hong-yan  (张红艳)Email author
  • Shen Ya-peng  (沈亚鹏)
  • Yin Guan-sheng  (尹冠生)


A theoretical analysis of the lateral resonances in 1–3 piezocomposites with poling initial stress is conducted using the Bloch wave theory. Based on the linear piezoelectricity theory, theoretical formulations that include initial stress for the propagation of acoustic plane waves are made. Numerical calculations are performed to study the effects of the initial stress on the lateral mode frequencies and the stop band. It is found that lateral mode frequencies increase with the piezoelectricity of the piezocomposites, but decrease with the poling initial stress. The influence of the initial shear stress on the lateral mode frequencies is minimal, and can thus be neglected.

Key words

lateral modes 1–3 piezocomposites initial stress 

Chinese Library Classification


2000 Mathematics Subject Classification



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Smith W A. The role of piezocomposites in ultrasonic transducers[C]. In: Proceedings of the IEEE Ultrasonics Symposium, 1996, 755–766.Google Scholar
  2. [2]
    Gururaja T R, Schulze W A, Cross L E, et al. Piezoelectric composites materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1985, 32(4):481–498.Google Scholar
  3. [3]
    Gomez H, Negreira C, Aulet A, et al. Influence of elastic characteristics of the polymer/resin in later resonances of piezocomposites(1–3)[C]. In: Proc IEEE Ultrasonics Symposium, 1996, 535–538.Google Scholar
  4. [4]
    Auld B A, Wang Y. Acoustic wave vibrations in periodic composite plates[C]. In: Proc IEEE Ultrason Symp, 1984, 528–532.Google Scholar
  5. [5]
    Wang Y. Waves and vibrations in elastic superlattice composites[D]. Ph D Dissertation, Stanford: Stanford Univ, 1986.Google Scholar
  6. [6]
    Certon D, Patat F, Casula O, et al. Theoretical and experimental investigations of lateral modes in 1–3 piezocomposites[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 1997, 44(3):643–651.CrossRefGoogle Scholar
  7. [7]
    Certon D, Patat F, Levassort F, et al. Lateral resonances in 1–3 piezoelectric periodic composite: modeling and experimental results[J]. J Acoust Soc Am, 1997, 101(4):2043–2051.CrossRefGoogle Scholar
  8. [8]
    Wilm M, Ballandras S, Laude V, et al. A plane-wave-expansion approach for modeling acoustic propagation in 2D and 3D piezoelectric periodic structures[C]. In: Proceedings of the 2001 IEEE Ultrasonics Symposium, 2001, 977–980.Google Scholar
  9. [9]
    Wilm M, Ballandras S, Laude V. A full 3D plane-wave-expansion model for 1–3 piezoelectric composite structures[J]. J Acoust Soc Am, 2002, 112(3):943–952.CrossRefGoogle Scholar
  10. [10]
    Kittel C. Introduction to solid state physics[M]. 5th Ed. New York: Wiley, 1976.Google Scholar
  11. [11]
    Hauke T, Steinhausen R, Seifert W, et al. Modeling of poling behavior of ferroelectric 1–3 composites[J]. J Appl Phys, 2001, 89(9):5040–5047.CrossRefGoogle Scholar
  12. [12]
    Zhang H Y, Li L X, Shen Y P. Modeling of poling behavior of ferroelectric 3–3 composites[J]. Int J Eng Sci, 2005, 43(4):1138–1156.CrossRefGoogle Scholar

Copyright information

© Editorial Committee of Appl. Math. Mech. 2007

Authors and Affiliations

  • Zhang Hong-yan  (张红艳)
    • 1
    • 2
    Email author
  • Shen Ya-peng  (沈亚鹏)
    • 2
  • Yin Guan-sheng  (尹冠生)
    • 1
  1. 1.School of ScienceChang’an UniversityXi’anP. R. China
  2. 2.School of AerospaceXi’an Jiaotong UniversityXi’anP. R. China

Personalised recommendations