Skip to main content
Log in

Nonlinear incidence rate of a pest management SI model with biological and chemical control concern

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A pest management SI model with impulsive releases of infective pests and spraying pesticides is proposed and investigated. We prove that all solutions of the model are uniformly ultimately bounded. We also obtain the sufficient conditions of globally asymptotic stability periodic solution of pest-extinction and permanence of the model. The approach of combining impulsive releasing infective pests with impulsive spraying pesticides provides reliable tactical basis for the practical pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Falcon L A. Use of bacteria for microbial control of insects[M]. New York: Academic Press, 1971.

    Google Scholar 

  2. Burges H D, Hussey N W. Microbial control of insects and mites[M]. New York: Academic Press, 1971, 67–95.

    Google Scholar 

  3. Falcon L A. Problems associated with the use of arthropod viruses in pest control[J]. Annu Rev Entomol, 1976, 21:305–324.

    Article  Google Scholar 

  4. Bailey N T J. The mathematical theory of infectious diseases and its applications[M]. London: Griffin, 1975, 413.

    Google Scholar 

  5. Burges H D, Hussey N W. Microbial control of insections and mites[M]. New York: Academic Press, 1971, 861.

    Google Scholar 

  6. Fenner F, Ratcliffe F N. Myxomatosis[M]. Cambridge: Cambridge University Press. 1965, 379.

    Google Scholar 

  7. Davis P E, Myers K, Hoy J B. Biological control among vertebrates[M]. In: Huffaker C B, Messenger P S (eds). Theory and Practice of Biological Control, New York: Plenum Press, 1976, 501–519.

    Google Scholar 

  8. Tanada Y. Epizootiology of insect diseases[M]. In: Debach P (ed). Biological Control of Insect Pests and Weeds, London: Chapman and Hall, 1964, 548–578.

    Google Scholar 

  9. Barclay H J. Models for pest control using predator release, habitat management and pesticide release in combineation[J]. J Appl Ecol, 1982, 19:337–348.

    Article  Google Scholar 

  10. Paneyya J C. A mathematical model of periodically pulse chemotherapy: tumor recurrence and metastasis in a competition environment[J]. Bull Math Biol, 1996, 58:425–447.

    Article  Google Scholar 

  11. D’Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Math Biol, 2002, 179:57–72.

    MATH  MathSciNet  Google Scholar 

  12. Van Lanteren J C. Integrated pest management in protected crops[M]. In: D Dent (ed). Integrated Pest Magangement, London: Chapman and Hall, 1995.

    Google Scholar 

  13. Roberts M G, Kao R R. The dynamics of an infectious disease in a population with birth pulse[J]. Math Biol, 2002, 149:23–36.

    Google Scholar 

  14. Xiao Y N, Chen L S. A ratio-depengent predator-prey model with disease in the prey[J]. Appl Math Comput, 2002, 131:397–414.

    Article  MATH  MathSciNet  Google Scholar 

  15. Xiao Y N, Chen L S. An SIS epidemic model with stage structure and a delay[J]. Acta Mathematicae Applicatae Sinica (English Series), 2002, 18(4):607–618.

    Article  MATH  MathSciNet  Google Scholar 

  16. Xiao Y N, Chen L S, Bosh F V D. Dynamical behavior for stage-structured SIR infectious disease model[J]. Nonlinear Analysis: RWA, 2002, 3(2):175–190.

    Article  MATH  Google Scholar 

  17. Xiao Y N, Chen L S. On an SIS epidemic model with stage-structure[J]. Journal of System Science and Complexity, 2003, 16:275–288.

    MathSciNet  Google Scholar 

  18. Lu Z H, Gang S J, Chen L S. Analysis of an SI epidemic with nonlinear transmission and stage structure[J]. Acta Math Science, 2003, 4:440–446.

    Google Scholar 

  19. Hethcote H. The mathematics of infectious disease[J]. SIAM Review, 2002, 42:599–653.

    Article  MathSciNet  Google Scholar 

  20. Anderson R M, May R M. Regulation and stability of host-parasity population interactions, I regulartory processes[J]. J Anim Ecol, 1978, 47:219–247.

    Article  Google Scholar 

  21. Goh B S. The potential utility of control theory to pest management[J]. Proc Ecol Soc, 1971, 6:84–89.

    Google Scholar 

  22. Gilbert N, Gutierrez A P, Frazer B D, Jones R E. Ecological relationships[M]. San Franciaco, Calif: W H Freeman and Co, 1976.

    Google Scholar 

  23. Wickwire K. Mathematical models for the control of pests and infectious diseases: a survey[J]. Theoret Population Biol, 1977, 8:182–238.

    Article  MathSciNet  Google Scholar 

  24. Anderson R, May R. Population biological of infectious diseases[M]. Berlin, Heidelberg, New York: Springer, 1982.

    Google Scholar 

  25. Anderson R, May R. Infectious diseases of humen: dynamics and control[M]. Oxford: Oxford University Press, 1991.

    Google Scholar 

  26. De Jong M C M, Diekmann O, Heesterbeek J A P. How dose tranmission depend on population size? in human infectious diseases[M]. In: Mollison D (ed). Epidemic Models, Cambridge UK: Cambridge University Press, 1995, 84–94.

    Google Scholar 

  27. Wei-min, Levin S A, Lwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS Epidemiological models[J]. J Math Biol, 1987, 25:359–380.

    Article  MATH  MathSciNet  Google Scholar 

  28. Wei-min, Hethcote H W, Levin S A. Dynamical behavior of epidemiological modls with nonlinear incidence rates[J]. J Math Biol, 1986, 23:187–240.

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen Lansun, Chen Jian. Nonlinear biological dynamics system[M]. Beijing: Science Press, 1993 (in Chinese).

    Google Scholar 

  30. Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42:43–61.

    Article  MATH  MathSciNet  Google Scholar 

  31. Ruan S, Wang W. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. J Differential Equations, 2003, 188:135–163.

    Article  MATH  MathSciNet  Google Scholar 

  32. Lakshmikantham V, Bainov D D, Simeonov P. Theory of impulsive differential equations[M]. Singapor: World scientific, 1989.

    Google Scholar 

  33. Bainov D, Simeonov P. Impulsive differential equations: periodic solutions and applications[M]. Ptiman Monographs and Surveys in Pure and Applied Mathematics, 1993, 66.

  34. Sangoh Bean. Management and analysis of biological populations[M]. Elsevier Scientific Press Company, 1980.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao Jian-jun Doctor  (焦建军).

Additional information

Communicated by GUO Xing-ming

Project supported by the National Natural Science Foundation of China (No.10471117)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, Jj., Chen, Ls. Nonlinear incidence rate of a pest management SI model with biological and chemical control concern. Appl Math Mech 28, 541–551 (2007). https://doi.org/10.1007/s10483-007-0415-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-007-0415-y

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation